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1 An Overview

Knotoids, introduced by Turaev [16], are immersions of the oriented unit interval
into oriented surfaces, endowed with over/under crossing information at each
transversal double point. In other words, knotoid diagrams are open-ended knot
diagrams as exemplified in Figure 1.

Figure 1: Knotoid diagrams.

A knotoid diagram in S2 generalizes the notion of a long knot with two end-
points (called leg and head) that can lie in any planar region complementary to
the knotoid diagram. Knotoid diagrams are considered up to three Reidemeis-
ter moves, see Figure 2, and the isotopy of the surface they lie in. Moving the
endpoints of a knotoid diagram is restricted: We forbid the two moves shown
in Figure 3. Precisely, it is forbidden to pull/push an endpoint over/under a
strand.

The notion of knotoid can be extended to the notion of multi-knotoid. A
multi-knotoid diagram in an oriented surface Σ is a union of a knotoid diagram
and a finite number of oriented knot diagrams in Σ. Multi-knotoid diagrams in
Σ are subject to the Reidemeister moves and isotopy of Σ. The induced isotopy
classes of multi-knotoid diagrams are called multi-knotoids.
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Figure 2: Reidemeister moves

Figure 3: Forbidden knotoid moves.

Knotoids in R2 admit a 3-dimensional interpretation through planar projec-
tions of open-ended curves in 3-dimensional space whose ends are attached on
two parallel lines [3], see Figure 4. With this interpretation, knotoids provide
a direct and realistic insight for the study of certain entangled physical objects
such as proteins [8, 9, 2]. (The reader is referred to the Chapter 36 for further
details.)

Figure 4: A space curve and its different planar projections as knotoids.

Here we present braidoids introduced by the author and Lambropoulou [6, 7].
A braidoid generalizes the notion of a classical braid: It is a system of descending
strands interacting with each other at a finite number of points assigned with
a specified over and under information. The ends of strands are assumed to
be fixed at top and bottom except the two ends that are not necessarily lying
at top or bottom and are subject to special topological moves that we explain
below. Before going into the precise definition let us view some examples of
braidoid diagrams given in Figure 5.
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Figure 5: Some examples of braidoid diagrams.

2 The Precise Definition of a Braidoid

2.1 Braidoid Diagrams

Let I denote the unit interval [0, 1] ⊂ R. We identify R2 with the xt-plane
with the t-axis directed downward. A braidoid diagram B is a system of a finite
number of arcs lying in I × I ⊂ R2. The arcs are called the strands of B. Each
strand is naturally oriented downward with no local maxima or minima, and
there is only a finite number of intersection points among the strands which
are transversal double points endowed with over/under data. Such intersection
points are called crossings of B.

B has two types of strands. A classical strand is like a braid strand con-
necting two points, one that lies on I ×{0} and the other lies on I ×{1}. Each
end of a classical strand is assumed to be fixed. The other type of strands, the
so called free strands, are of a more flexible nature: One or two ends of a free
strand are located at points which are not necessarily on I ×{0} or on I ×{1},
and they are not assumed to be fixed. Such ends of free strands are denoted by
graphical nodes to be distinguished from the fixed ends (that might be the ends
of either classical or free strands), and are called endpoints of B. B has exactly
two endpoints. We call an endpoint a head if it is the terminal point of a free
strand and a leg if it is the beginning point of a free strand, in analogy with the
leg and the head of a knotoid diagram. Each fixed end of B lying on I × {0}
is paired up with a fixed end on I × {1} that is in the same vertical alignment
with it. Paired ends are called corresponding ends. Each pair of corresponding
ends are numbered from left to right, as we show in Figure 5.

2.2 Isotopy Moves of Braidoid Diagrams

We allow ∆-moves on braidoid diagrams that replace a segment of a strand with
two segments in a triangular region free of any of the endpoints (see Figure 6).
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Figure 6: A ∆-move.

A ∆-move on a braidoid diagram preserves the downward orientation of the
braidoid strands and respects the crossing information of the strands intersecting
the triangular region of the move. The Reidemeister II and III moves in which
the downward direction of strands is preserved, are special cases of the ∆-moves
on braidoid diagrams. Similar to the forbidden moves of knotoid diagrams,
moving the endpoints of a braidoid diagram over/under a strand, as shown in
Figure 7, are forbidden moves for braidoid diagrams. It is clear that allowing
forbidden moves would cancel any braiding of the free strands.

Figure 7: Forbidden braidoid moves.

The following moves displacing the endpoints are allowed on braidoid dia-
grams.

1. Vertical moves: An endpoint can be pulled up/down along the vertical
direction as long as the forbidden moves are not violated (see Figure 8).

2. Swing moves: An endpoint can be moved to the right and to the left like
a pendulum (see Figure 9), as long as the downward orientation on the
swinging arc is preserved and the forbidden moves are not violated.

Figure 8: A vertical move.

Figure 9: Swing moves.
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Definition 1 A braidoid is an isotopy class of braidoid diagrams taken up to
the isotopy relation generated by the oriented Reidemeister II and III moves and
planar ∆ moves together with the swing and vertical moves for the endpoints.

3 Braidoids in Relation with Knotoids

In 1923 Alexander showed that any classical knot and link can be represented
in braided form [1], then in 1936 Markov proved a one-to-one correspondence
between the set of classical links considered up to link isotopy and the set of
braids considered up to a braid equivalence relation generated by braid isotopy
moves, conjugation and stabilization [15]. We have analogues of Alexander’s
and Markov’s theorems that relate braidoids equipped with a special labeling
to multi-knotoids in R2.

3.1 Labeled Braidoid Diagrams

Definition 2 A labeled braidoid diagram is a braidoid diagram such that each
pair of its corresponding ends —not the endpoints—is labeled either with o or
u.

Labeled braidoid diagrams are subject to the braidoid ∆-moves, the vertical
moves, and the restricted swing moves, shown in Figure 10, whereby the swinging
of an endpoint takes place within the interior of the vertical strip determined by
the vertical lines that pass through two neighboring pairs of corresponding ends.
During the restricted swing moves, the endpoints cannot surpass the vertical line
determined by any pair of corresponding ends. Clearly, a restricted swing move
is transformed into a planar isotopy move by the closure defined below. The
reason for restricting the swing moves for labeled braidoid diagrams is to avoid
any incident of forbidden moves on the multi-knotoid diagram obtained by the
closure. See Figure 13 that depicts how an unrestricted swing move gives rise
to nonequivalent knotoids under the closure.

i i+1 i i+1

Figure 10: Restricted swing moves.

Definition 3 Labeled braidoid isotopy is generated by the braidoid ∆-moves,
vertical moves and the restricted swing moves, preserving at the same time the
labeling. Equivalence classes of labeled braidoid diagrams under this isotopy
relation are called labeled braidoids.
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3.2 A Closure for Labeled Braidoids

The correspondence between labeled braidoid diagrams and multi-knotoid dia-
grams in R2 is based on a closure operation that is defined in analogy with the
closure of braid diagrams in handlebodies [13] (see the Chapter 7 for further
details).

In this closure operation, each pair of the corresponding ends of a labeled
braidoid diagram is connected with an arc that goes entirely over or under the
rest of the diagram according to the label of ends, as illustrated in Figure 11
and in Figure 12.

Figure 11: Closure of a labeled braidoid diagram.

Precisely, if a pair is labeled with o then the connecting arc goes entirely
over the diagram and if a pair is labeled with u then the connecting arc goes
entirely under the diagram. The connecting arcs lie on the right-hand side of the
pairs of corresponding ends, in an arbitrarily close distance to the vertical lines
determined by these pairs so that there is no endpoint of the braidoid diagram
between the vertical lines and the connecting arcs. The resulting diagram is
clearly a knotoid or a multi-knotoid diagram in the plane. Note that the closure
of the trivial braidoid diagram shown in Figure 5 that has no pairs of corre-
sponding braidoid ends, is assumed to be the trivial knotoid. Also, the isotopy
class of the resulting multi-knotoid diagram depends on the labeling. A braidoid
diagram equipped with two different labelings might yield to non-isotopic clo-
sures, as shown in Figure 12 (it is left as an exercise for the interested reader to
verify the knotoid on the right-hand side of the figure is actually non-trivial).

It is shown in [6, 7] that the closure operation induces a well-defined map
on the set of labeled braidoids to the set of multi-knotoids in R2.
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Figure 12: Two different labelings and nonequivalent knotoids upon closure.

Figure 13 illustrates an unrestricted swing move on an endpoint of a labeled
braidoid diagram that corresponds to a knotoid forbidden move upon closure.
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Figure 13: Swing moves may give rise to nonequivalent knotoids.

3.3 How to Turn a Knotoid Diagram into a Braidoid Di-
agram

Let K be a knotoid or a multi-knotoid diagram in a plane equipped with the top-
to-bottom direction. One way to obtain an inverse operation to the closure we
define above, that is, to transform K to a labeled braidoid diagram whose closure
is isotopic to K, is to manipulate K by eliminating its arcs oriented upward,
namely the up-arcs. Before the elimination begins, the knotoid diagram K is
subdivided (marked with dots) starting from its local maxima and minima until
each of its up-arcs contains only one type of crossings (either over- or under-
crossings) or contains no crossings at all. We label each up-arc with o or u
according to the type of crossings it contains. If an up-arc does not contain any
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crossings, then we are free to label the up-arc either with o or u. Braidoiding
moves are analogues of the braiding moves defined for classical braids [11, 12, 14].

Definition 4 A braidoiding move consists of cutting an up-arc at a point (we
call a cut-point), and then pulling the resulting ends entirely over or under
the rest of the diagram according to the label of the up-arc, to I × {0} and
I × {1} preserving the alignment with the cut-point (see Figure 14). A cut-
point is chosen so that it is not vertically aligned with another cut-point or with
an endpoint of K. To obtain a pair of braidoid strands (that is, monotonically
descending strands with a label), we complete the braidoiding move by ∆-moves
applied to the upward-directed pieces of the resulting strands (see the second
step shown in Figure 14). Finally, we label the resulting braidoid strands with
o or u with respect to the label of the up-arc eliminated. Notice that in the
last instance of Figure 14, the pair of the resulting corresponding ends is joined
up together with a connecting arc that goes entirely over the diagram in accord
with the labeling. By this, we obtain a closed strand which can be retracted
back to the initial up-arc QP . Note that during this isotopy, a violation of the
knotoid forbidden moves is avoided by choosing the connecting arc close enough
to the vertical line determined by the pair of corresponding ends.

Q

P

Q

P

cut
Q

P

at some point
Δ-move

o

o o

closure
Q

P

o

Figure 14: A braidoiding move and its closure.

In [6, 7] we present two braidoiding algorithms for turning a planar multi-knotoid
diagram into a braidoid diagram. Both of these algorithms are based on the
braidoiding moves. Figure 15 exhibits one of the braidoiding algorithms which
consists of rotating a crossing of a given multi-knotoid diagram by 90 degrees
if the crossing is contained in one up-arc and by 180 degrees if the crossing is
contained in two up-arcs and then applying the braidoiding moves on the result-
ing multi-knotoid diagram. The reader is encouraged to see the closure of the
labeled braidoid diagram obtained in Figure 15 is isotopic to the given knotoid
diagram, and is referred to [6, 7] for the technical details of the algorithms.

The closure defined for labeled braidoid diagrams and the braidoiding algo-
rithms provide us the following theorem [6, 7, 5] that is an analogue of Alexan-
der’s theorem [1].
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Theorem 5 Any multi-knotoid diagram in R2 is isotopic to the closure of a
labeled braidoid diagram.

The braidoiding algorithm presented in Figure 15 also provides the following
sharpened version of Theorem 5 [6, 5].

Theorem 6 Any multi-knotoid diagram in R2 is isotopic to the closure of a
labeled braidoid diagram whose corresponding ends labeled only with u.

1

2

3

4

rotate crossings 1,3 ,4

mark with subdividing points
label and order the  up-arcs

u1

u2

u3
apply braidoiding moves
        in given order

1 2 3
u u u

closure

and the head

Figure 15: A knotoid diagram and the associated labeled braidoid diagram.

3.4 A Geometric Markov Theorem for Braidoids

It is possible that two non-isotopic labeled braidoid diagrams in a plane close to
isotopic planar knotoids or multi-knotoids (consider the closures of the first three
braidoid diagrams in Figure 5 with some labeling). A natural question arising is
the following: Is there a way to define a relation between labeled braidoids that
have isotopic closures?

In [7] we give a geometric relation between labeled braidoid diagrams closing
to isotopic knotoids or multi-knotoids. This relation is induced by the L-moves
[6, 7] and some special swing moves defined on labeled braidoid diagrams. The
L-moves were originally defined for classical braids by Lambropoulou [11, 12, 14],
and utilized to prove a one-move Markov theorem for classical braids [11].

There are two types of L-moves as shown in Figure 16. An Lo- move (respec-
tively an Lu-move) consists of cutting a labeled braidoid strand at an interior
point and pulling the ends of the resulting sub-strands to the top and bottom
lines over the rest of the diagram (respectively under the rest of the diagram)
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so that a new pair of strands is obtained whose ends are vertically aligned with
the cut-point. The resulting strands are labeled with o (respectively with u).
Notice that when the corresponding ends of the resulting strands are connected
with an overpassing arc (respectively with an underpassing arc), we obtain a
closed strand which is isotopic to the original braidoid strand. This observation
is sufficient to deduce that two labeled braidoid diagrams which are related to
each other via L-moves have isotopic closures.

Lo - move at P

o

deletion of Lo-move

P

Figure 16: An Lo-move on a braidoid strand.

We also observe that there are some type of unrestricted swing moves that
yield isotopic knotoids or multi-knotoids through the closure. With this type
of swing moves, the endpoint surpasses the vertical line determined by a pair
of corresponding ends but this do not affect the isotopy class of the resulting
(multi-)knotoid diagram. See Figure 17. We call these moves fake swing moves.

uo

a fake swing move
 

uo

 

Figure 17: A fake swing move.

The L-moves together with the fake swing moves extend the labeled braidoid
isotopy and provide us the following theorem that is an analogue of Markov’s
theorem [15] for labeled braidoids.

Theorem 7 The closures of two labeled braidoid diagrams are isotopic multi-
knotoid diagrams in R2 if and only if the labeled braidoid diagrams relate to
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each other by a sequence of labeled braidoid isotopy moves, addition/deletion of
L-moves, and fake swing moves.

For proving this theorem, we examine the effect of all possible algorithmic
choices made in the braidoiding algorithms and the transformation of the kno-
toid isotopy moves under the braidoiding moves. The reader is referred to [6]
for the details of the proof.

4 Discussion

Braidoids provide a new diagrammatic theory that is, in fact, a braid theory
for the theory of knotoids. An underlying combinatorial structure for braidoids
is discussed in [5, 7], In this combinatorial structure, braidoid diagrams can
be partitioned into a finite number of building blocks extending the braiding
generators. With the algebraic expressions corresponding to the building blocks
and the Alexander and Markov-type theorems discussed throughout this paper,
braidoids suggest an algebraic tabulation for polymers, specifically for proteins
[7].
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