
Chapter 1
On the height of knotoids

Neslihan Gügümcü, Louis H. Kauffman

Abstract Knotoid diagrams are defined in analogy to open ended knot diagrams
with two distict endpoints that can be located in any region of the diagram. The
height of a knotoid is the minimal crossing distance between the endpoints taken
over all equivalent knotoid diagrams. We define two knotoid invariants; the affine
index polynomial and the arrow polynomial that were originally defined as virtual
knot invariants given in [3, 9], respectively, but here are described entirely in terms
of knotoids in S2. We reprise here our results given in [4] that show that both poly-
nomials give a lower bound for the height of knotoids.

1.1 Introduction

The theory of knotoids was introduced by V. Turaev [17] in 2012. A knotoid diagram
[17] is an open ended knot diagram with two endpoints that can be located in any
region of the diagram. The theory of knotoids forms a new diagrammatic theory that
is an extension of the classical knot theory. In this paper, we give an exposition of
two new polynomial knotoid invariants that were constructed in [4].

It is natural to examine knotoids in the context of virtual knot theory [6,7]. Virtual
knots are knots in thickened surfaces (or knot diagrams in surfaces) taken up to
handle stabilization. There is a diagrammatic theory for virtual knots, as we explain
briefly in this paper. The endpoints of a knotoid diagram can be connected to form
what we call the virtual closure of the diagram. This way of connecting the endpoints
of a knotoid diagram forms a well-defined map from the set of knotoids to the set of
virtual knots. Virtual knot invariants can be then applied to extract knotoid invariants
by using the virtual closure map.
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Section 2 recollects the fundamental concepts of knotoids. Knotoid diagrams
can be defined both in S2 and R2. There is an inclusion map between two sets of
knotoids; knotoids in R2 and knotoids in S2, induced by the inclusion R2 ↪→ S2.
Knotoids in R2 are a part of geometric 3-dimensional knot theory, and, as such,
are related to open-ended embeddings of intervals in three-dimensional space. We
discuss this point of view in Subsection 2.4.

Given a knotoid K in S2, we can ask how far apart the endpoints need to be in all
instances of diagrams for the equivalence class of K. The smallest distance between
two endpoints of K (in terms of number of classical crossings created while con-
necting the endpoints with an embedded arc that goes under) is called the height of
the knotoid. The height is an invariant of knotoids in S2 [17]. In Section 3 we define
the height of a knotoid as in [17]. We then make a remark on virtual knot theory
and discuss the virtual closure map. In Subsection 3.2, we mention two conjectures
from [4]. One of the conjectures asserts that there are virtual knots of genus 1 which
are not in the image of the virtual closure map. The other conjecture asserts that the
normalized bracket polynomial detects the trivial knotoid.

Section 4 is devoted to two polynomial invariants of knotoids; the affine index
polynomial and the arrow polynomial. Both of these polynomials are examined by
the authors in full detail in [4]. The affine index polynomial and the arrow polyno-
mial were originally defined as virtual knot invariants [3, 9, 15]. We observe in [4]
that they can be defined as invariants of knotoids by considering only knotoid dia-
grams. In this paper we present our main results given in [4], that consist in lower
bound estimations for the height of knotoids via these two polynomials. We give
sketches of the proofs for our results. We end the section with examples for the use
of these estimations.

1.2 About Knotoids

A knotoid diagram in S2 or in R2, K is defined as a generic immersion,

K : [0,1]→ S2 or R2 such that

• K has finitely many transversal double points. These points are endowed with
over/under-crossing data and they are called the crossings of K.

• The images of 0 and 1 are two points distinct from each other, and from the
crossings of K. These two points are the endpoints of a knotoid diagram and they
are called the tail and the head of K, respectively. A knotoid diagram is always
oriented from its tail to its head.

The trivial knotoid diagram is an embedding of the unit interval into S2 (or in
R2). It is depicted by an arc without any crossings as shown in Figure 1.1a.
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Fig. 1.1: Some examples of knotoid diagrams

The three Reidemeister moves shown in Figure 1.2, are defined on knotoid dia-
grams, and are denoted by Ω1, Ω2, Ω3, respectively. These moves modify a knotoid
diagram within a small disk as shown in the figure and they do not utilize the end-
points. The moves in Figure 1.3 that consist of pulling an endpoint over or under a
strand, are the forbidden knotoid moves, and denoted by Φ+ and Φ−, respectively.
It is clear that if both Φ+ and Φ−- moves were allowed, any knotoid diagram could
be turned into the trivial knotoid diagram.

Ω1

Ω2

Ω3

Fig. 1.2: Ω -moves

Φ+ Φ−

Fig. 1.3: Forbidden knotoid moves

The Ωi=1,2,3-moves plus isotopy of S2 generate an equivalence relation on kno-
toid diagrams in S2 (for knotoid diagrams in the plane we consider the isotopy of
the plane). A knotoid is defined to be an equivalence class of all equivalent knotoid
diagrams up to this equivalence relation. The set of all knotoid classes in S2 and in
R2 are denoted by K (S2) and K (R2), respectively.

There is a well-defined map between the two knotoid sets,

ι :K (R2)→K (S2),

that is induced by the inclusion R2 ↪→ S2 =R2∪∞. Any knotoid in S2 can be repre-
sented by a knotoid diagram in R2 by pushing a representative diagram in S2 away
from the ∞ ∈ S2. Considering the equivalence class of this planar representation in
K (R2), there is a well-defined map ρ : K (S2)→K (R2). It is clear that ι ◦ρ = id
so that ι is surjective. However, there are examples of nontrivial knotoids in R2

which are trivial in K (S2) showing that the map ι is not injective. An example for
this is illustrated in Figure 1.1b. The knotoid diagram in the figure which represents
a nontrivial planar knotoid [17] but it represents the trivial knotoid in S2. In this
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paper, we study the knotoids in S2 and we mean knotoids in S2 unless otherwise
stated.

Definition 1. Let M be a category of mathematical structures (e.g. polynomials,
Laurent polynomials, the integers modulo five, commutative rings, groups, · · · ). An
invariant of knotoids is a mapping I : Knotoids in S2 → M such that equivalent
knotoids map to equivalent structures in M .

1.2.1 Knots via knotoid diagrams

In [17] the study of knotoid diagrams is suggested as a new diagrammatic approach
to the study of knots in three dimensional space R3. The endpoints of a knotoid
diagram can be connected with an embedded arc in S2 that is declared to go under
each strand it crosses. In this way we obtain an oriented classical knot diagram in
S2 representing a knot in R3. The resulting knot diagram is called the underpass
closure of the knotoid diagram. Note that the arc connecting the endpoints is unique
up to isotopy. We say that a knotoid diagram K represents a classical knot κ if κ is
represented by the underpass closure of K.

Fig. 1.4: Two types of closures

Alternatively, the endpoints of a knotoid diagram in S2 can be connected with an
embedded arc in S2 which is declared to go over every strand it crosses. The resulting
oriented knot diagram is called the overpass closure of the knotoid diagram. Note
that this type of connection arc is also unique up to isotopy. The underpass closure
and the overpass closure of a knotoid diagram may represent inequivalent knots.
For instance, the knotoid diagram given in Figure 1.4 represents a trefoil via the
underpass closure and represents the trivial knot via the overpass closure. In order
to have a well-defined representation of knots via knotoid diagrams, we should fix
the closure type. The closure type is chosen to be the underpass closure and the
following proposition follows.

Proposition 1. [17] Two knotoid diagrams K1 and K2 represent the same classical
knot if and only if they are related to each other by finitely many Ωi=1,2,3- moves,
Φ−-moves and isotopy of S2.
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Given a knot in R3, we take an oriented diagram of the knot in S2. Cutting out
an underpassing arc which may contain no crossing or one or more crossings from
this diagram, results in a knotoid diagram that represents the given knot. In fact, any
knot in R3 can be represented by a knotoid diagram in S2.

Representing knots in three dimensional space via knotoid diagrams may ease
the computation or give finer estimations for knot invariants. See [17] for the knot
group computation via knotoid diagrams and for the lower bound estimation for the
Seifert genus of knots.

1.2.2 Knotoids as an extension of knot theory

There is a well-defined injective map,

α: Knot Diagrams in S2/〈Ω1,Ω2,Ω3〉 → Knotoids in S2,

where 〈Ω1,Ω2,Ω3〉 denotes the equivalence on knot diagrams given by the three
Reidemeister moves defined on knot diagrams. Let D be an oriented knot diagram
in S2. Cutting out an open arc of D which is apart from the crossings of D results
in a knotoid diagram with two endpoints in the same local region of the diagram.
The map α is induced by assigning D to the resulting knotoid diagram. The knotoid
obtained via the map α does not depend on the knot diagram chosen or the arc that
is cut out from the knot diagram [17] and the map α is injective [17].

Definition 2. Knotoids that are in the image of the α map, are called knot-type kno-
toids.

A knot-type knotoid has at least one diagram in its equivalence class whose
endpoints lie in the same local region of the diagram. Such a diagram is called a
knot-type knotoid diagram. The figures 1.1a, 1.1b and 1.1e set some examples of
knot-type knotoid diagrams.

Definition 3. The knotoids that are not in the image of α , are called proper or pure
knotoids.

The endpoints of a proper knotoid can lie in any but different local regions of the
diagram for any its representative diagram. The set of knotoids in S2 can be regarded
as a union of these two types of knotoids,

K (S2)={Knot-type knotoids} ∪ {Proper knotoids}.

The map α , being an injective map, gives a one-to-one correspondence between
the set of equivalence classes of knots and the set of knot-type knotoids. Thus the
theory of knotoids extends the theory of classical knots (knots in R3). Notice that by
the allowance of the Φ−-move on knotoid diagrams, the theory of knotoids becomes
an equivalent theory to the theory of classical knots.
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1.2.3 The algebraic structure on the set of knotoids

A multiplication operation is defined on the set of knotoids, K (S2) in [17] as fol-
lows. Let k1, k2 be two knotoids represented by two knotoid diagrams K1 and K2.
Take 2-disk neighborhoods B1, B2 of the head of K1, and the tail of K2, respectively,
such that both discs intersect the diagrams along a radius. We glue S2− Int(B1) to
S2− Int(B2) through a homeomorphism taking ∂B1 to ∂B2 and carrying the single
intersection point of ∂B1 and K1 to the single intersection point of ∂B2 and K2. Then
K1− Int(B1) meets with K2− Int(B2) at one point and they form a knotoid diagram
in S2, denoted by K1K2. The knotoid diagram K1K2 represents the product knotoid
k1k2 in S2.

The multiplication operation is associative and the trivial knotoid forms the iden-
tity element with respect to this multiplication. The set of knotoids, K (S2) endowed
with the multiplication, forms a semigroup with identity element [17].

1.2.4 A geometric interpretation of knotoids

It is natural to see a knotoid diagram in R2 as a generic projection of an open-
ended, oriented space curve. Given an open-ended, smooth, oriented curve that is
embedded in R3 with a generic projection to a plane. The endpoints of the curve
determine two lines that pass through the endpoints and are perpendicular to the
plane. The generic projection of the curve to the plane along the lines is a knotoid
diagram in that plane when self-crossings of the projection curve is endowed with
over and under-crossing data accordingly with the weaving of the space curve. We
call an open-ended curve embedded in R3 that has a generic projection to a plane, a
generic curve with respect to the plane.

Any knotoid diagram in R2 determines an open-ended oriented curve embedded
in R3. Let K be a knotoid diagram in R2. The plane of the diagram is identified with
R2×{0} ⊂R3. The overpasses of the diagram are pushed into the upper half-space
and the underpasses are pushed into the lower half-space in the vertical direction.
The tail and the head of the diagram are attached to the two lines, t×R and h×R
that pass through the tail and the head, respectively, and are perpendicular to the
plane of the diagram. Moving the endpoints of K along these special lines gives rise
to several open-ended oriented curves in R3 with endpoints lying on these lines.
Figure 1.5 illustrates three space cuves obtained from the same knotoid diagram in
the xy-plane.



1 On the height of knotoids 7

Fig. 1.5: Space curves obtained by the knotoid diagram in Figure 1.1c

Definition 4. Let c1, c2 be two open-ended, smooth, oriented curves that are em-
bedded in R3 with a generic projection to the same plane, and t and h denote their
endpoints. The curves c1 and c2 are said to be line isotopic if there is a smooth am-
bient isotopy of the pair (R3 \ {t ×R,h×R}, t ×R∪ h×R), taking one curve to
the other curve in the complement of the lines, taking endpoints to endpoints, and
taking the lines to the lines; t×R to t×R and h×R to h×R.

Theorem 1 ( [4, Theorem 2.2]). Two oriented curves in R3 that are both generic
with respect to a given plane, are line isotopic ( with respect to the lines determined
by the endpoints of the curves and the plane) if and only if the projections of the
curves to the plane when endowed with over/under data at each self-crossing points
accordingly to the weaving of the curves, are equivalent knotoid diagrams.

Note that the equivalence classes of knotoid diagrams that are the projections of
the same open-ended curve embedded in three-dimensional space, may vary with
respect to the projection plane. Figure 1.6 depicts the projections of a space curve
to the xy- and the xz-plane. It is clear that the xz-projection gives the trivial knotoid.
The projection to the xy- plane, however, gives the knotoid diagram given in Figure
1.1c and one can show that this diagram represents a nontrivial knotoid in S2 and in
R2 (see Section 1.3.1 and [4] for more details). In [4] we suggest that one can study
the set of all knotoids assigned to one space curve for understanding the physical
properties of the space curve.
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Fig. 1.6: Knotoids in different projection planes

1.3 The height of a knotoid

The height (or the complexity as used in [17]) of a knotoid diagram in S2 is the
minimum number of crossings that a connection arc creates during the underpass
closure. The height of a knotoid K is defined as the minimum of the heights, taken
over all knotoid diagrams equivalent to K. The height is a knotoid invariant [17].
We note that we use the term height instead of complexity for knotoids to focus
on this concept and allow us to use the word complexity more freely. One often
refers to the complexity of a knot or a knotoid in terms of its crossing number or the
virtual crossing number of the closure and other measures of how complicated is the
topological type of the object. We hope that the reader will agree that this choice of
terminology is useful in this case.

The height of a knotoid is preserved under the basic involutions of knotoid dia-
grams consisting of the reversion, mirror image, and the symmetry [17]. That is, for
a knotoid K,

h(K) = h(mir(K)) = h(sym(K)) = h(rev(K)).

The height is also invariant under the isotopy of S2 so that we can consider only
planar knotoid diagrams and connection arcs in R2 for the computation of the height.

Theorem 2 ( [17, Theorem 4.3]). The height of a product knotoid k1k2, h(k1k2) =
h(k1)+h(k2) for any k1, k2∈K (S2).

As pointed out in [17], a knotoid is of knot-type if and only if it has zero height
or equivalently, a knotoid is a proper knotoid if and only if it has a nonzero height.
Thus the height is an efficient tool to measure how far a knotoid is from being a knot
and for the classification of knotoids. The following conjecture has been made by
V.Turaev.

Conjecture 1. [17] Minimal diagrams (with respect to the crossing number) of knot-
type knotoids have zero height.
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We have found a proof of this conjecture and we will give the proof in [5].

1.3.1 The bracket polynomial of a knotoid

The bracket polynomial of a knotoid [17] is defined by extending the state expan-
sion of the bracket polynomial of knots [10,11]. Each crossing of a knotoid diagram
K is smoothed either by A- or B-type smoothing, as shown in Figure 1.7. A smooth-
ing site is labeled by 1 if A-smoothing is applied and labeled by −1 if B-smoothing
is applied at a particular crossing. A state of the knotoid diagram K is a choice of
smoothing each crossing of K with the labels at smoothing sites. Each state of K
consists of disjoint embedded circular components and a single long segment com-
ponent with two endpoints. The initial conditions given in Figure 1.7 are sufficient
for the skein computation of the bracket polynomial of a knotoid.

Definition 5. The bracket polynomial of a knotoid diagram K is defined as

< K >= ∑S Aσ(S)d‖S‖−1,

where the sum is taken over all states, σ(S) is the sum of the labels of the state S,
‖S‖ is the number of components of S, and d = (−A2−A−2).

K = d K

= 1

A-smoothing B-smoothing

= A + A−1

=A−1 A+

Fig. 1.7: Skein relations of the bracket polynomial

The writhe of a knotoid diagram K, wr(K) is the number of positive crossings (cross-
ings with sign +1) minus the number of negative crossings (crossings with sign−1)
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of K. The writhe is invariant under the generalized Ω -moves except that Ω1-move
changes the writhe by ±1. The bracket polynomial turns into an invariant for kno-
toids with a normalization by the writhe. The normalized bracket polynomial of a
knotoid K, fK is defined as the multiplication, fK = (−A3)−wr(K) < K > [17].

The normalized bracket polynomial of knotoids in S2 generalizes the Jones poly-
nomial of knots in R3 with the substitution A = t−1/4. The Jones polynomial of the
trivial knotoid is trivial.

positive negative

Fig. 1.8: Crossing types

Example 1. Let K1 be the knotoid diagram illustrated in Figure 1.9. As we compute
in the figure, the bracket polynomial of K1, < K1 >= A2 + 1−A−4. This implies
that K1 is a non-trivial knotoid.

A + A−1
=

A ( A + A−1 + A−4
= )

= (A2 +1−A−4)

Fig. 1.9: Computation of the bracket polynomial of K1

The well-known Jones polynomial conjecture can be extended to a conjecture for
knotoids in S2.
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Conjecture 2. The normalized bracket polynomial of knotoids in S2 (or the Jones
polynomial) detects the trivial knotoid.

1.3.2 Briefly on virtual knots

The theory of virtual knots that was introduced by L.H. Kauffman [6, 7] in 1996,
studies the embeddings of circles in thickened surfaces modulo isotopies and dif-
feomorphisms of the surface and one-handle stabilization of the surfaces. Virtual
knot theory has a diagrammatic formulation.

In the diagrammatic theory, virtual knots and links are represented by diagrams
with finitely many classical crossings (transversal self-crossings of the underlying
curve that are endowed with over/under- data) and with virtual crossings which are
neither over-crossings or under-crossings. A virtual crossing is indicated by two
crossing segments with a small circle placed around the crossing point.

The moves on virtual diagrams are generated by the classical Reidemeister moves
plus the detour move. The detour move allows a segment with a consecutive se-
quence of virtual crossings to be excised and replaced by any other such a segment
with a consecutive virtual crossings, as shown in Figure 1.10. Local expressions that
generate the detour move are illustrated in Figure 1.11 and 1.12.

Virtual knot and link diagrams that can be connected by a finite sequence of
these moves are said to be equivalent or virtually isotopic. The least number of
virtual crossings that a virtual knot can have among its virtual equivalence class is
the virtual crossing number.

Virtual knots and links can also be represented by embeddings without any vir-
tual crossings in thickened orientable surfaces just as non-planar graphs may be
embedded in surfaces of some genus. Further information on virtual knots and their
association with thickened surfaces can be found in [2,6–8,13,14,16]. Here we state
the following theorem.

Theorem 3 ( [2,7,12, Theorem 1, 3.3, 4.1 ]). Two virtual link diagrams are virtually
isotopic if and only if their surface embeddings are equivalent up to isotopy and
diffeomorphism of the surface, and addition/removal of empty handles.
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Fig. 1.10: The detour move

Fig. 1.11: Local detour moves

Fig. 1.12: The Virtual forbidden moves

1.3.3 A transition to virtual knot theory

A knotoid diagram in S2 represents a virtual knot as pointed out in [17]. The end-
points of a knotoid diagram can be connected with an embedded arc in S2 in the
virtual fashion, that is, a virtual crossing is created every time the connection arc
passes through a strand of the diagram. The resulting virtual knot diagram can be
represented in a torus by attaching a 1-handle to S2 which holds the connection arc.

Connecting the endpoints of a knotoid diagram in S2 in the virtual fashion in-
duces a well-defined map that is called the virtual closure map and is denoted by
v,

v: Knotoids in S2→ Virtual knots of genus ≤ 1.
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Figure 1.13 illustrates a pair of knotoid diagrams whose virtual closures are the
same virtual knot. It can be shown that the knotoid group [17] of the left hand
side knotoid diagram has the presentation < x,y|x2 = y3 > (it is isomorphic to the
knot group of the trefoil knot). On the other hand, the knotoid group of the right
hand side knotoid diagram is isomorphic to Z. Since the knotoid group is a kno-
toid invariant [17], we conclude that these two diagrams are nonequivalent knotoid
diagrams. One other way to distinguish these two knotoid diagrams is the tricol-
orability of knotoids. The tricolorability of classical knots can be extended to an
invariant of knotoids by applying the rules of tricolorability directly to knotoid di-
agrams. A knotoid diagram K in S2 is tricolorable if each overpassing strand of K
(a strand of K that initiates at an undercrossing and terminates at the next under-
crossing or terminates at the head of K or initiates at the tail of K and terminates at
the next undercrossing) can be colored with one of three colors with respect to the
following rules.

• At least two colors must be used.
• At each crossing, the three incident strand should be colored either with the same

color or with three different colors.

In Figure 1.13 shows that the left hand side knotoid diagram is tricolorable with
the colors a,b,c and the right hand side knotoid diagram is not tricolorable; the dia-
gram can be colored with only one color. Since tricolorability is a knotoid invariant
it follows that they are not equivalent knotoid diagrams. Therefore, the virtual clo-
sure map is not an injective map [4]. We will discuss on tricolorability and in general
coloring of knotoids in detail in a subsequent paper.

v v

a

b
c

a
a

a

Fig. 1.13: Nonequivalent knotoid diagrams with the same virtual closure

Proposition 2 ( [5]). The virtual closure map is not surjective.
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This proposition can be proved by examining of the surface states of the surface
bracket polynomial of virtual knots that lie in the image of the virtual closure map.
A proof for the proposition will appear in [5].

The virtual closure map, being a well-defined map forms a machinery to define
knotoid invariants by virtual knot invariants. In fact for any invariant of a virtual
knot, denoted by Inv, we can define a knotoid invariant, denoted by I through the
following formula.

I(K) = Inv(v(K)), for a knotoid K in S2.

In fact, many invariants obtained from the virtual closure can be defined directly
for the knotoids in their own category, without the consideration of the virtual clo-
sure map. This is the case for the affine index polynomial and the arrow polynomial
as described in the next section.

Remark 1. There is a rich subject of virtual knotoids where we allow knotoid dia-
grams with virtual crossings. This subject is discussed briefly in [4] and will be the
subject of further papers.

1.4 Estimation of height

1.4.1 Affine index polynomial of a knotoid

The affine index polynomial of a knotoid is constructed in terms of weights assigned
to crossings. The underlying flat diagram of a knotoid diagram is obtained by omit-
ting the over/under-data at each crossing of the knotoid diagram and turning them
into flat crossings. An arc of a flat knotoid diagram either connects an endpoint of
the diagram to a flat crossing or connects a flat crossing to the next flat crossing.
There is an integer labeling rule assigned to the arcs of the underlying flat diagram
of a knotoid diagram which is set as follows. If an arc crosses a (flat) crossing to-
wards right then its label is decreased by one and if it crosses a node towards left
then its label is increased by one. See Figure 1.14 for the labeling at a flat crossing.

a

a−1b+1

b

Fig. 1.14: Integer labeling at a flat crossing
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Let K be a knotoid diagram. The labeling procedure begins by the arc that is
adjacent to the tail of K and it is labeled by 0 conventionally. Note that the adjacent
arcs to the tail and the head take the same label.

There are two integer outcomes by the labeling rule at each crossing of K. The
positive and negative weights of a crossing c, denoted by w+(c) and w−(c), respec-
tively, are defined as the differences of the labels around c. That is,

w+(c) = a− (b+1)
w−(c) = b− (a−1)

where a and b are the labels for the left and the right incoming arcs at the corre-
sponding node to c, respectively.
The weight of c is defined as

wK(c) =

{
w+(c), if the sign of c is positive
w−(c), if the sign of c is negative.

Definition 6. The affine index polynomial of a knotoid diagram K is defined by the
equation,

PK(t) = ∑c sign(c)(twK(c)−1) = ∑c sign(c)twK(c)−wr(K)

where wr(K) is the writhe of K.

Theorem 4 ( [4, Theorem 4.8]). The affine index polynomial is an invariant of kno-
toids in S2.

Proof. It is sufficient to check the change in the weights under oriented Ωi=1,2,3-
moves. The labeling is uniquely inherited by these moves. It is left to the reader the
check the crossing added/removed by an Ω1-move has zero weight. Two crossings
added/removed by an Ω2-move have opposite weights so their contributions cancel
each other. The weights of the crossings in an Ω3-move do not change. Therefore
the polynomial remains the same under these moves.

Theorem 5 ( [4, Theorem 4.12]). Let K be a knotoid in S2. The height of K is
greater than or equal to the maximum degree of the affine index polynomial of K.

Proof (Sketch of the proof). The proof of the theorem relies mostly on the follow-
ing observation. Each crossing of a knotoid diagram determines a unique loop (a
continous path obtained by traversing the diagram starting and ending at a crossing
accordingly to the orientation of the diagram) throughout the diagram. A loop that
is determined by a crossing is called the loop at the crossing. The algebraic inter-
section number of a loop at a crossing, with other strands of the diagram is equal to
either the positive weight or the negative weight of that crossing, depending to the
orientation of the loop. In Figure 1.15, l(C) on the left-hand side, denotes a small
portion of the loop at a crossing C and we see the convention for the algebraic inter-
section number of the loop with other strands. On the right-hand side of the figure,
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two possible types of loops at C that may be observed accordingly to the orientation
of the diagram, are shown. The algebraic intersection number of the strands shown
in the figure with the loops are +1 and −1, respectively. By the same figure, it can
also be verified that w−(C) = +1 for the first loop that is oriented counterclockwise
and w+(C) = −1 for the second loop that is oriented clockwise (See [4] for more
details).

a

a+1
a

a−1C C a

a−1

a

a+1

−1

+1

l(C)

Fig. 1.15: Two possible loops at the crossing C with different orientations

Let K̃ be a representative knotoid diagram of K. A crossing of K̃ is a maximal
weight crossing if wK̃(c) is maximal among the weights of crossings of K̃. Let c be
a maximal weight crossing of K̃. All crossings which are seen twice along the loop
at the crossing c are smoothed in the oriented way (Seifert smoothing), as shown in
Figure 1.16.

Fig. 1.16: Seifert smoothing of a crossing

This smoothing results in several disjoint embedded circles in S2 (Seifert circles)
and a long segment containing the endpoints. Let IK̃ be the algebraic intersection
number of the long segment with the Seifert circles. It is observed that,

• |IK̃ | ≤ # of the Seifert circles enclosing the endpoints,
• IK̃ is equal to the algebraic intersection number of the loop at c with the rest of

the diagram since the crossings on the loop which contribute to the intersection
number non-trivially are not smoothed. Then,
|IK̃ |= wK̃(c),

• # of the Seifert circles enclosing the endpoints ≤ h(K̃), by the Jordan curve
theorem.
Therefore we have the following inequality,

• wK̃(c)≤ h(K̃).
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The maximum degree of the affine index polynomial is an invariant since the
polynomial is an invariant. This implies that there exists a crossing at each repre-
sentative diagram whose weight is equal to wK̃(c). By applying the same procedure
given above to each representative diagram, we can conclude that the maximum
degree of the affine index polynomial is a lower bound for the height of K.

Example 2. The height of a knotoid represented with a standard n-fold spiral dia-
gram can be read by Theorem 5. In particular, the affine index polynomials of the
knotoid diagrams K1, K2 and K3 that are overlying the flat diagrams given in Fig-
ure 1.17 with all positive crossings, are PK1(t) = t + t−1−2, PK2(t) = t2 + t + t−1 +
t−2−4 and PK3(t) = t3 + t2 + t + t−1 + t−2 + t−3−6, respectively. It can be verified
by the figure that the heights of the diagrams K1, K2, K3 are 1,2,3, respectively.
Then by Theorem 5 we conclude that the heights of the knotoids represented by
K1,K2,K3 are 1, 2 and 3, respectively. This argument is generalized as follows. The
affine index polynomial of a knotoid represented by an n-fold spiral knotoid dia-
gram is of the form tn + tn−1 + ...+ t + t−1 + ...+ t−(n−1)+ t−n−2n if all crossings
of the diagram are positive. The maximal degree of the affine index polynomial is n.
Then by Theorem 5, the height of the knotoid is at least n. The height of the n-fold
spiral diagram is n. Therefore, the height of a knotoid represented by a n-fold spiral
diagram is equal to n. This implies that we have an infinite set of knotoids whose
heights are given by the maximal degrees of their affine index polynomials.
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Fig. 1.17: Flat spiral knotoid diagrams

Proposition 3. The height of a product knotoid k1k2, h(k1k2)≥ degP(k1)+degP(k2),
where degP(ki) is the maximal degree of the affine index polynomial of ki, i = 1,2.

Proof. The following inequality degP(k1k2)≤ degP(k1)+degP(k2) can be verified
by the reader. The proposition follows by this inequality and by Theorem 2 given in
Section 1.3
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1.4.2 The arrow polynomial of a knotoid

The arrow polynomial of a knotoid is constructed by the oriented state expansion of
the bracket polynomial for knotoids; consisting of oriented and disoriented smooth-
ings of crossings, shown in Figure 1.18.

= A + A−1

= A−1
+ A

K = (−A2−A−2)K

Fig. 1.18: Oriented state expansion

Smoothing out all the crossings of a knotoid diagram results in oriented states
containing circular components and a long segment component. There is an ex-
tra combinatorial structure on the state components coming out by the disoriented
smoothings. This new structure is seen in the form of a pair of cusps, each of cusps
has two arcs either going into the cusp or going out from the cusp. Each cusp gen-
erates two angles; one is an acute, the other one is an obtuse angle. The local region
which is spanned by the acute angle is called the inside of the cusp.

There is a list of rules given in Figure 1.19 to reduce the number of cusps in
state components. The rules essentially eliminate two consecutive cusps with in-
sides located on the same side of the segment connecting them. As a consequence
of the Jordan curve theorem, all cusps on circular state components of a knotoid
diagram are eliminated so that circular components are free of cusps. Each circular
and the long state component without cusps contributes as a −A2−A−2 factor to
the polynomial. The long state components with consecutive cusps whose insides
are located at different sides can not be saved from the cusps and contribute to the
arrow polynomial as variables Λi.



1 On the height of knotoids 19

Λ1 Λ2

K1

K2

Long State Components

Fig. 1.19: Reduction rules for the arrow polynomial

Definition 7. The arrow polynomial of a knotoid diagram K in S2 is defined as fol-
lows.

A [K] = ∑S< K|S >(−A2−A−2)‖S‖−1Λi,

where the sum runs over the oriented bracket states, < K|S > is the usual vertex
weights of the bracket polynomial, ‖S‖ is the number of components of the state S
and Λi is the variable associated to the long segment component of S with irreducible
cusps.

Theorem 6 ( [4, Theorem 5.1]). The normalization of the arrow polynomial by
(−A3)−wr(K), where K is a knotoid diagram and wr(K) is its writhe, is a knotoid
invariant.

Proof. The proof follows similarly with the proof for the invariance of the normal-
ized arrow polynomial for virtual knots/links [3].
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Definition 8. The Λ -degree of a summand of the arrow polynomial of a knotoid in
S2 which is of the form, AmΛi is equal to i. The Λ -degree of the arrow polynomial
of a knotoid is defined to be the the maximum Λ -degree among the Λ -degrees of
the summands.

The arrow polynomial was firstly defined as a virtual knot invariant by H.Dye
and L. Kauffman [3] and independently by Y. Miyazawa [15]. It also utilizes the
oriented state expansion and is defined in a similar way as it is defined for knotoids.
Oriented state components of a virtual knot diagram consist of circular components.
Circular components may have irreducible cusps as illustrated in Figure 1.19. A cir-
cular component with 2i irreducible cusps contributes as a Ki-variable to the arrow
polynomial. Since oriented states of a classical knot are cusp-free, no Ki-variables
occur in the arrow polynomial of classical knots [7]. Similarly, circular components
of an oriented state of a knotoid are cusp-free and so no Ki-variables occur in the
arrow polynomial of a knotoid in S2. However, closing the endpoints of a knotoid
diagram via the virtual closure map turns Λi-variables into Ki-variables that are as-
signed to the circular components obtained via this closure.

Definition 9. The K-degree of a summand of the arrow polynomial of a virtual knot
which is of the form, Am(Ki1

j1Ki2
j2 ...Kin

jn) is equal to

i1× j1 + ...+ in× jn.

The K-degree of the arrow polynomial of a virtual knot is the maximum mono-
mial degree in K.

Theorem 7 ( [3, Theorem 2.3]). The virtual crossing number of a virtual knot/link
is greater than or equal to the maximal K-degree of the arrow polynomial of that
virtual knot/link.

Theorem 8 ( [4, Theorem 5.4]). The height of a knotoid K in S2, h(K) is greater
than or equal to the Λ -degree of its arrow polynomial.

Proof. Closing a knotoid diagram virtually corresponds, in the states, to closing
the endpoints of the long state components in the virtual fashion. Therefore the
Λi-variables assigned to long state components with surviving cusps transform to
Ki-variables assigned to the circular components with surviving cusps in the arrow
polynomial of the virtual knot obtained by the virtual closure. By this observation
and Theorem 7, we have the following inequality for the knotoid k.

The Λ -degree of A [K] ≤ # of virtual crossings of the knot v(K).

The least number of virtual crossings obtained by closing a knotoid diagram
virtually, is equal to the height of that diagram. Thus,

# of virtual crossings of the knot v(K)≤ h(K̃),

for any knotoid diagram K̃ representing K. This gives the following inequality,

The Λ -degree of A [K] ≤ h(K̃).
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The inequality above holds for any knotoid diagram in the equivalence class of K
since the Λ -degree of the polynomial is invariant under Ωi=1,2,3-moves. Therefore
we have,

The Λ -degree of A [K] ≤ h(K).

Proposition 4. The height of a product knotoid k1k2, h(k1k2)≥ degΛ A [k1]+degΛ A [k2],
where degΛ A [ki] is the Λ -degree of A [ki], i = 1,2.

Proof. It can be verified by the reader that degΛ A [k1k2]≤ degΛ A [k1]+degΛ A [k2].
The proposition follows by this inequality and Theorem 2 given in Section 1.3.

1.4.3 A discussion on two polynomials

The arrow polynomial coincides with the bracket polynomial of knotoids [4, 17] if
the Λi-variables assigned to long segment components of oriented states are set to be
equal to 1. Thus the arrow polynomial is a generalization of the bracket polynomial
of knotoids. The affine index polynomial uses the flat biquandle structure [9] of a
knotoid diagram. It is quite a different concept than both the arrow and the bracket
polynomial.

Two estimations of the height given by the affine index and the arrow polynomi-
als are used to determine the height of many knotoids. Here we present one example
where the arrow polynomial gives a more accurate estimation of the height than the
affine index polynomial and another example where both polynomials are not suffi-
cient to make an exact estimation of the height.

Example 3. The knotoid diagram K in Figure 1.20 represents the knotoid listed as
knotoid 5.7 [1]. The affine index polynomial of the knotoid 5.7 is trivial (the reader
can verify this by the weight chart of K given in the figure). However, the arrow
polynomial of the knotoid is nontrivial. In fact we have, A [K] = (−A−3+A−2A5+
A9)+(A−9−2A−5 +2A−1−2A3 +A7)Λ1. Thus the Λ -degree of the arrow polyno-
mial of the knotoid 5.7 is 1. Also, it is clear that the height of the diagram K is one.
By Theorem 8, it follows that the height of the knotoid 5.7 is 1 and this knotoid is
in fact a proper knotoid.
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Fig. 1.20: The knotoid diagram K and its weight chart

Example 4. The knotoid diagram K given in Figure 1.21 represents the knotoid
listed as knotoid 5.24 [1]. It can be verified that the affine index polynomial
of the knotoid is PK(t) = t + t−1 − 2. The arrow polynomial of the knotoid is
A [K]=(−A−7 +A−3−A−A5 +A9)+(2A−1−3A3 +A7)Λ1. Both the maximal de-
gree of the affine index polynomial polynomial and the Λ -degree of the arrow poly-
nomial are equal to 1. Thus the height of the knotoid is at least 1, by Theorem 5 and
Theorem 8. It is clear that the diagram K has height 2. Thus we have 1≤ h(K)≤ 2.
We conclude that the knotoid 5.24 is a proper knotoid but both the affine index
polynomial and the arrow polynomial can not give an exact height estimation for
this knotoid.
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