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BRAIDOIDS

NESLİHAN GÜGÜMCÜ AND SOFIA LAMBROPOULOU

Abstract. Braidoids generalize the classical braids and form a counterpart
theory to the theory of planar knotoids, just as the theory of braids does for

the theory of knots. In this paper, we introduce the notion of braidoids in

R2, a closure operation for braidoids, we prove an analogue of the Alexander
theorem, namely an algorithm that turns a knotoid into a braidoid, and we

formulate and prove a geometric analogue of the Markov theorem for braidoids

using the L-moves.

1. Introduction

A knotoid in an oriented surface Σ is an equivalence class of oriented open-ended
knot diagrams in Σ, with two endpoints that can lie in any local region determined
by the diagram. The equivalence is generated by the Reidemeister moves and
isotopies of Σ, which include the swinging of an endpoint within a region free of
endpoints. View Figures 1 and 2. When Σ is, in particular, the 2-sphere S2 the
knotoids are named spherical knotoids. When Σ is the plane they are named planar
knotoids.

The theory of knotoids was introduced by V. Turaev in 2011 [37]. Turaev showed
that the set of classical knots injects into the set of spherical knotoids, where a knot
can be viewed as a knotoid with zero complexity. The complexity of a knotoid K
(or height, as the term used in [17]) is the minimum number of crossings over all
diagrams of K, that are created when realizing the end-to-end (underpass) clo-
sure of each diagram of K to a knot diagram. The above observation provides a
strong motivation for using knotoids in computing classical knot invariants, espe-
cially those based on the number of crossings, since the computations would reduce
exponentially with reducing the number of crossings in a diagram. We recall that
the complete classification of knots is still a big open problem in Mathematics and
it is tackled by constructing isotopy invariants for distinguishing pairs of different
knots. Indeed, Turaev -among other results- defined the knot group in terms of
knotoids, invariants for knotoids, such as the bracket polynomial, and he remarked
on the fruitful connections of the theory with virtual knot theory. Turaev also
showed that there is a surjective map from the set of planar knotoids to the set of
spherical knotoids, which is not injective.

After the works [37, 16] and [7], the interest in knotoids was rekindled by the
second author, who proposed the subject to the first author for her PhD study [19].
Then, in [17] the first author with L. H. Kauffman constructed new invariants for
knotoids, considering the virtual end-to-end closure and employing techniques from
virtual knot theory [25]. We recall that a virtual knot diagram contains classical as

1This article is accepted to be published in Israel Journal of Mathematics
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well as virtual crossings, where a virtual crossing has no information under or over,
it roughly indicates a permutation of the two acs involved. Another interesting
result in [17] is the realization of a knotoid via its lifting to an open-ended curve
embedded in 3-space. Through this lifting knotoids could serve as mathematical
models for proteins and the theory of knotoids could be used for analyzing their
topology. Consequently, in [13] invariants of spherical knotoids were applied, which
rendered as much information as the use of the virtual closure, while in [14] the
application of planar knotoids revealed richer structure.

In parallel, the theory of braidoids was initiated by the authors of the present pa-
per [19, 18] for counterparting the theory of planar knotoids, just as classical braids
comprise an algebraic counterpart to classical knots. A braid is a set of descending
strands with paired top-to-bottom ends, and equivalence classes of braids under
obvious planar isotopy and level preserving Reidemeister moves realize groups, the
Artin braid groups of type A [3, 4, 24]. The paired ends of a braid can be joined to
form a closure, which is a knot or a link. The inverse operation consists in turning
an oriented knot or link into an isotopic closed braid and this is always possible by
the classical Alexander theorem [11, 2, 9]. The Alexander theorem and its proof
play a key role in the proof of the Markov theorem, which provides an equivalence
relation among elements of the braid groups that corresponds precisely to the iso-
topy relation among oriented knots and links [34, 39, 9, 8]. The two theorems allow,
in principle, for the use of braids and algebraic techniques in the study of knots
and links and they were successfully used for the first time by V. F. R. Jones in his
construction of the famous Jones polynomial [21, 22]. Consequently, these theorems
received anew the attention of several mathematicians [35, 38, 40, 36, 31, 32, 10],
whose works revealed diverse and interesting approaches.

In analogy to a braid diagram, a braidoid diagram consists in a set of descending
strands such that two of them are special: one of them terminates at an endpoint,
the head, and the other starts from the second endpoint, the leg. Either endpoint
may lie in any region and at any height of the diagram. See Figure 5 for examples. A
braidoid, then, is the equivalence class of braidoid diagrams under obvious isotopy
moves analogous to the knotoid equivalence moves, as illustrated in Figures 6, 8,
9. In particular, endpoints may swing and there are also the forbidden moves in
the theory, Figure 7. Hence, the notion of braidoid extends the notion of classical
braid. We study braidoids in relation to knotoids by defining an appropriate closure
operation, which respects the forbidden moves. The closure is defined on braidoid
diagrams with labelled ends, specifying whether the joining arcs will run all over
or all under the rest of the diagram.

An analogue of the classical Alexander theorem, stating that any knotoid di-
agram can be turned into a labeled braidoid diagram with isotopic closure, was
proved in [18]. In this paper, we give a second proof of the Alexander theorem for
braidoids, which is more adapted for proving an analogue of the classical Markov
theorem. Indeed, we formulate and prove a geometric analogue of the Markov the-
orem for braidoids, using the concept of the L-move as introduced in [31, 32]. An
L-move is a geometric as well as algebraic move for braids and it consists in cutting
a braid arc at any point and pulling the two ends along the vertical line of the
cutpoint, both over or both under the rest of the diagram, so as to obtain in the
end a new pair of corresonding braid strands. The L-moves provide an one-move
version of the classical Markov theorem [32]. The set of braidoids does not support
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an obvious algebraic structure. So, it would not be possible to formulate a braidoid
equivalence without the use of the L-moves. In [19, 18] a set of building blocks for
braidoids is listed along with some relations that they satisfy. We then propose in
[18] to encode a protein by the monomials of the building blocks for the braidoids
corresponding to the knotoids related to the protein. We finally relate braidoids
to classical or virtual braids by defining appropriately the underpass resp. virtual
closure. We recall that a virtual braid contains classical as well as virtual crossings,
see [25, 26].

For further works on knotoids and applications the interested reader may consult
[1, 5, 15, 20, 28, 29].

Let us now present the organization of the paper. In Section 2 we review basics
on knotoids. In Section 3 we define the notion of braidoid diagram and the notion
of braidoid by introducing isotopy moves on braidoid diagrams. In Section 4, we
explain a way to close a braidoid diagram with labels which will relate them to
knotoids. Later, in Section 5 we describe an algorithm for turning a knotoid diagram
into a labeled braidoid diagram with isotopic closure. This yields an analogue of
the classical Alexander theorem for braidoids. In Section 6 we adapt the classical L-
moves, which were originally defined for braid diagrams by the second listed author
in [30], for braidoid diagrams. We also introduce the fake swing moves, which
along with the L-moves comprise the L-equivalence. We then prove our geometric
analogue of the Markov theorem for braidoids. Finally, in Section 7 we present the
underpass and virtual closures that relate a braidoid to a classical resp. a virtual
braid.

2. A review of knotoids

Let [0, 1] be the unit interval and Σ be any oriented surface. A knotoid diagram
K in Σ is an immersion K : [0, 1]→ Σ that is generic in the sense that there is only
a finite number of double points appearing as transversal crossings each with the
extra information of under or over. The images of 0 and 1 are two distinct points
disjoint from any crossings of K, too, and are called leg and head of K, respectively.
Furthermore, K inherits a natural orientation from its leg to its head. In Figure 1
we show some examples of knotoid diagrams including the trivial knotoid diagram
that admits no crossing.

Figure 1. Knotoid diagrams

Definition 1. A piecewise-linear knotoid diagram is a union of finitely many edges:
[p1, p2], ..., [pn−1, pn] such that each edge intersects one or two other edges at the
vertices, pi, for i = 2, ..., n− 1. The vertices p1 and pn correspond to the endpoints
of the diagram. Two edges can also intersect transversely at double points endowed
with over/under-data, called crossings of the diagram.
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Any classical knot diagram can be turned into a piecewise-linear knot diagram
and piecewise-linear isotopy classes are in bijection with ambient isotopy classes of
knots [12]. In a similar way any knotoid diagram can be turned into a piecewise-
linear knotoid diagram. In this paper, we will be working for convenience with
piecewise-linear knotoid diagrams. Moreover we will be considering Σ = R2.

2.1. Moves on knotoid diagrams. A ∆-move on a knotoid diagram is a re-
placement of an arc with two arcs (or vice versa) forming a triangle which does not
contain any of the endpoints of the knotoid diagram and passing entirely over or
under any arcs intersecting this triangle, as shown in Figure 2. The Reidemeister
moves Ω1, Ω2, Ω3 (Figure 2) are some special cases of ∆-moves. We shall call a
∆-move that takes place in a triangular region that does not contain any arcs of
the diagram in its interior a planar ∆-move and denote it as Ω0-move. Finally, we
have the swing moves whereby an arc containing an endpoint sweeps a triangular
region free of any other arcs of the diagram. The swing moves can be viewed as
special cases of Ω0-moves where one side of the isotopy triangle is omitted. See
Figure 2. The moves consisting of pulling the strand adjacent to an endpoint over
or under a transversal strand as shown in Figure 3 are the forbidden knotoid moves.
It is clear that if both forbidden moves were allowed, any knotoid diagram in S2

and in R2 could be turned into the trivial knotoid diagram.

Note. There are two situations where forbidden moves seemingly occur. Precisely,
when the arc adjacent to an endpoint is involved in an Ω1- or an Ω2-move followed
by a planar isotopy, as illustrated in Figure 4. These moves have the same effect
as one or two consecutive forbidden moves of same type. We shall call these moves
fake forbidden moves.

swing move

     Ω0
Ω1

Ω2

Ω3

Figure 2. ∆-moves

Figure 3. Forbidden knotoid moves
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fake forbidden

Ω2- move planar isotopy

fake forbidden

Ω1- move
planar isotopy

Figure 4. Fake forbidden moves

We shall call Ω0,Ω1,Ω2,Ω3 moves together with the swing moves the Ω-moves.
Two knotoid diagrams are isotopic to each other if there is a finite sequence of
Ω-moves that transforms one into the other. The isotopy generated is clearly an
equivalence relation and the isotopy classes of knotoid diagrams are called knotoids
in R2. The set of all knotoids in R2 is denoted by K(R2).

2.2. Extending the definition of knotoids. A multi-knotoid diagram in S2 or
in R2 [37] is an extended knotoid diagram having a finite number of knot diagrams
in the sense that it is a generic immersion of the oriented unit interval and a
finite number of oriented circles in S2 or in R2. The equivalence relation defined on
knotoid diagrams applies to multi-knotoid diagrams directly, and the corresponding
equivalence classes are called multi-knotoids. In this paper we work with multi-
knotoids in R2.

3. Braidoids

In this section we define braidoid diagrams and the isotopy classes of them that
we call braidoids. A braidoid diagram is defined similarly to a braid diagram as a
system of finite descending strands. The main difference is that a braidoid diagram
has one or two of its strands starting with/terminating at an endpoint that is not
necessarily at top or bottom lines of the defining region of the diagram.

3.1. The definition of a braidoid diagram.

Definition 2. Let I denote the unit interval [0, 1] ⊂ R. A braidoid diagram B
is a system of a finite number of arcs immersed in I × I ⊂ R2. We identify R2

with the xt-plane with the t-axis directed downward. The arcs of B are called
the strands of B. Following the natural orientation of I, each strand is naturally
oriented downward, with no local maxima or minima. There are only finitely many
intersection points among the strands, which are transversal double points endowed
with over/under data. Such intersection points are called crossings of B.

A braidoid diagram has two types of strands, the classical strands and the free
strands. A classical strand is like a braid strand connecting a point on I × {0} to
a point on I ×{1}. A free strand either connects a point in I ×{0} or I ×{1} to a
special point that is located anywhere in I×I or connects two special points located
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anywhere in I × I. These special points are called the endpoints of B. A braidoid
diagram contains either one free strand (see for example Figure 5(a)) or two free
strands (see for example Figure 5 (b), (c), (d), (e)) and exactly two endpoints. The
endpoints are specifically named as the leg and the head and are emphasized by
graphical nodes labeled by l and h, respectively, in analogy with the endpoints of
a knotoid diagram. Precisely, the head is the endpoint that is terminal for a free
strand with respect to the orientation, while the leg is the starting endpoint for a
free strand with respect to the orientation. See some examples of braidoid diagrams
in Figure 5.

1 21 l 2

a b

h

h
l

l
h

1 2 3

c d

1l

h

Figure 5. Some examples of braidoid diagrams

The ends of the strands of B other than the endpoints are called braidoid ends.
We assume that braidoid ends lie equidistantly on the top and the bottom lines
and none of them is vertically aligned with any of the endpoints. It is clear that
the number of braidoid ends that lie on the top line is equal to the number of
braidoid ends that lie on the bottom line of the diagram. The braidoid ends on
top and bottom lines are arranged in pairs so that they are vertically aligned and
are called corresponding ends. We number them with nonzero integers according to
their horizontal order (from left to right), as in the examples illustrated in Figure 5.

Note that the endpoints of B differ conceptually from its braidoid ends. As we
will see in the next section, the endpoints are subject to some isotopy moves unlike
the braidoid ends, and the endpoints do not participate in the closure operation we
introduce unlike the braidoid ends.

A braidoid diagram is piecewise-linear if all of its strands are formed by consec-
utive linear segments. Any braid diagram can be represented by a piecewise-linear
braid diagram. Likewise, any braidoid diagram can be represented by a piecewise-
linear braidoid diagram. We shall consider piecewise-linear braidoid diagrams, when
convenient.

3.2. Braidoid isotopy. There are two types of local moves generating the braidoid
isotopy.

3.2.1. Moves on segments of strands. We adapt the ∆-moves introduced in Section
2.1 to braidoid diagrams. A braidoid ∆-move replaces a segment of a strand with
two segments in a triangular disk free of endpoints, passing only over or under the
arcs intersecting the triangular region of the move whilst the downward orientation
of the strands is preserved (see Figure 6). The oriented Ω0, Ω2 and Ω3, which keep
the arcs in the move patterns directed downward, can be viewed as special cases of
braidoid ∆-moves.
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Figure 6. A planar ∆-move on a braidoid diagram

3.2.2. Moves of endpoints. Like for knotoid diagrams, we forbid to pull/push an
endpoint of a braidoid diagram over or under a strand, as shown in Figure 7. These
are forbidden moves on braidoid diagrams. It is clear that allowing both forbidden
moves can cancel any braiding of the free strands.

Figure 7. Forbidden braidoid moves

We allow the following moves on segments of braidoid strands containing end-
points.

(1) Vertical Moves: As shown in Figure 8, the endpoints of a braidoid diagram
can be pulled up or down in the vertical direction as long as they do not
violate any of the forbidden moves (e.g. crossing through or intersecting
any strand of the diagram). Such moves are called vertical moves.

(2) Swing Moves: An endpoint can also swing to the right or the left like a
pendulum (see Figure 9) as long as the downward orientation on the moving
arc is preserved, and the forbidden moves are not violated.

11 l

vertical move

h

22 l

h

Figure 8. A vertical move on h

Figure 9. The swing moves for braidoids
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Definition 3 (braidoid isotopy). It is clear that assuming braidoid ends fixed at
the top and bottom lines, the braidoid Ω2 and Ω3- moves together with braidoid Ω0-
moves and the swing and vertical moves for the endpoints generate an equivalence
relation on braidoid diagrams in R2. Two braidoid diagrams are said to be isotopic
if one can be obtained from the other by a finite sequence of braidoid isotopy moves.
An isotopy class of braidoid diagrams is called a braidoid.

4. From braidoids to planar knotoids - a closure operation

We present a closure operation on braidoid diagrams in analogy with the closure
of braids in handlebodies [33]. In order to do this, we introduce the notion of
labeled braidoids.

Definition 4. A labeled braidoid diagram is a braidoid diagram whose correspond-
ing ends are labeled either with o or u in pairs. See Figures 10, 13. Each label
indicates either an overpassing or underpassing arc, respectively, that will take
place in the closure operation explained below.

Definition 5. Let B be a labeled braidoid diagram. The closure of B, denoted

B̂, is a planar (multi)-knotoid diagram obtained by the following topological op-
eration: each pair of corresponding ends of B is connected with an embedded arc
(with slightly tilted extremes) that runs along the right hand-side of the vertical
line passing through the ends and in a distance arbitrarily close to this line. The
connecting arc goes entirely over or entirely under the rest of the diagram accord-
ing to the label of the ends. We demonstrate abstract and concrete examples in
Figure 10 and 13, respectively.

Figure 10. The closure of an abstract labeled braidoid diagram

The reason that a joining arc is required to lie in an arbitrarily close distance
to the line of the related corresponding ends is that, otherwise, forbidden moves

may obstruct an isotopy of B̂ between any two joining arcs. Notice also that the
resulting multi-knotoid depends on the labeling of the braidoid ends. In Figure 13
we see two labeled braidoid diagrams induced by the same underlying braidoid
diagram via different labelings, give rise to non-equivalent knotoids.

On labeled braidoid diagrams we allow the braidoid ∆-moves and the vertical
moves to take place on labeled braidoid diagrams and we forbid the forbidden
braidoid moves. However, we do not allow swing moves for labeled braidoid di-
agrams in full generality. We only allow the restricted swing moves whereby the
swinging of an endpoint takes place within the interior of the vertical strip deter-
mined by the neighboring vertical lines passing through two consecutive pairs of
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corresponding braidoid ends (see Figure 11). The reason for restricting the swing
moves is because if the endpoints surpass the vertical lines of the corresponding
ends this will cause forbidden moves on the closure. See Figure 12 for an example.

Definition 6. Labeled braidoid isotopy is generated by the braidoid Ω-moves, the
vertical moves and the restricted swing moves, preserving at the same time the la-
beling. Equivalence classes of labeled braidoid diagrams under this isotopy relation
are called labeled braidoids.

i i+1 i i+1

Figure 11. The restricted swing moves for braidoids

1 2 1 2
u u u u

~ ~ ~

Figure 12. A swing move causing a forbidden move on the closure

Lemma 1. The closure operation induces a well-defined mapping from the set of
labeled braidoids to the set of multi-knotoids in R2.

Proof. Let b1 and b2 be two labeled braidoid diagrams representing the same labeled
braidoid. Then b1 and b2 differ from each other by braidoid isotopy moves. It is
clear that braided Ω2 and Ω3-moves are transformed into a sequence of knotoid
Ω2 and Ω3-moves. Also, the vertical and swing moves are transformed into planar
isotopy on the (multi)-knotoid diagram obtained by the closure. Therefore the
closures of b1 and b2 are isotopic (multi)-knotoid diagrams.

�
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~ ~

ooo

~

oo u

1 2 3

Figure 13. An example of non-equivalent labeled closures

5. An algorithm for obtaining labeled braidoids from planar
knotoids

In this section we present the braidoiding moves on knotoid diagrams that induce
algorithms for turning any planar (multi)-knotoid diagram into a labeled braidoid
diagram [19]. By these algorithms we obtain the following theorem.

Theorem 1. (An analogue of the Alexander theorem for knotoids) Any (multi)-
knotoid diagram in R2 is isotopic to the closure of a labeled braidoid diagram.

In [19] two such algorithms for proving Theorem 1 are presented. One of the
algorithms appearing also in [18] is conceptually lighter than the other one presented
here, see also Remark 1. The algorithm we present here is more ‘rigid’ in the sense
that it assumes knotoid diagrams as rigid diagrams. This makes the algorithm
more appropriate for proving a braidoid equivalence result analogous to the classical
Markov theorem for classical braids.

5.1. The basics of the braidoiding algorithm. Let K be a (multi)-knotoid dia-
gram in a plane identified with the xt-plane. We describe below how to manipulate
K in order to obtain a labeled braidoid diagram, after endowing the plane of K
with top-to-bottom direction. We will be assuming that K lies in [0, 1]× [0, 1] since
K is compact.

5.1.1. Up-arcs and free up-arcs. It is clear that by small perturbations K can be
assumed to be a diagram without any horizontal or vertical arcs. Thus K consists
of a finite number of arcs oriented either upward or downward, and these arcs are
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separated by finitely many local maxima or minima. The arcs of K that are oriented
upward are called up-arcs and the ones oriented downward are called down-arcs of
K. An up-arc may contain crossings of different types (over/under-crossings) or no
crossing at all. See Figure 14. An up-arc that contains no crossing is called a free
up-arc.

u

o
u

o/u

Figure 14. Two up-arcs containing crossings and a free up-arc

5.1.2. Subdivision. We start by marking the local maxima and minima of K with
points, which we name as subdividing points. In the process we may need to sub-
divide further some of the up-arcs of K so that each one contains crossings of only
one type. We attach a label to each up-arc accordingly to the crossing type it con-
tains: we attach o if the up-arc contains over-crossing(s), u if the up-arc contains
under-crossing(s). The up-arcs that are free of crossings can be labeled either o or
u.

5.1.3. Braidoiding moves. The basic idea of turning K into a labeled braidoid di-
agram is to keep the arcs of K that are oriented downward, with respect to the
top-to-bottom direction, and to eliminate its up-arcs by turning them into braidoid
strands. The elimination of the up-arcs is done by utilizing the sequence of moves
illustrated in Figure 15. Precisely, a braidoiding move consists of cutting an up-
arc at a point and pulling the resulting sub-arcs to top and bottom lines entirely
over or entirely under the rest of the diagram by preserving the alignment with the
cut-point. Finally we slide the resulting sub-arcs down and up, respectively, across
local triangular regions in order to eliminate the upward oriented pieces. An up-arc
is eventually turned into a braidoid strand as also depicted in Figure 15. It can also
be verified by Figure 15 that the resulting ends obtained by cutting the up-arc QP
at a point are pulled entirely over the rest of the diagram and received the label
o, and when we join the resulting pair of corresponding ends with an over-passing
arc, we obtain a closed strand that is isotopic to the initial up-arc QP .

Q

P

Q

P

cut QP

Q

P

at a point
∆-move

o

o

o

o

o

closure

Q

P

o

o

Figure 15. A braidoiding move
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5.1.4. Cut-points and sliding triangles. Let QP be an up-arc of K with respect to
a given subdivision of K where Q denotes the initial and P denotes the top-most
subdivision point.

The right angled triangle which lies below QP and admits QP as hypotenuse,
and is a special case of a triangle enabling a ∆-move is called the sliding triangle
of the up-arc QP . We denote the sliding triangle by T (P ), see Figure 16. The disk
bounded by the sliding triangle T (P ) is utilized after cutting QP , for sliding down
the resulting lower sub-arc across it. See Figure 16.

Q

P

Q

P

Q

Po

o o

Figure 16. The sliding triangle of the up-arc QP with P the cut point

A cut-point of an up-arc is defined to be the point where the up-arc is cut to
start a braidoiding move. We pick the top-most point P ∈ QP as the cut-point of
QP for our algorithm.

5.1.5. A condition on sliding triangles. One may come across the situation where
one (or two) of the endpoints lies in the region bounded by some sliding triangle
as in Figure 17. This is an unwanted situation since it would cause a forbidden
move when the knotoid strand obtained by closing the resulting braidoid strand is
tried to be isotoped back to the initial up-arc. We impose the following condition
on knotoid diagrams to avoid this.

The endpoint triangle condition A sliding triangle of a knotoid diagram is not
allowed to contain an endpoint.

To satisfy this condition we introduce a subdivision of up-arcs into smaller sub-
arcs by adding extra subdividing points. See Figure 17. More precisely, we have
the following proposition.

Lemma 2. Let K be a knotoid diagram and T (P ) be the sliding triangle correspond-
ing to an up-arc QP . If T (P ) contains the leg or the head of K in its interior or
boundary then there is a further subdivision of QP admitting new sliding triangles
whose disks are disjoint from the endpoint.

Proof. We can assume that QP lies in the first quadrant of the plane and has a
positive slope without loss of generality. There is a unique horizontal and vertical
line passing through the endpoint in question and each intersecting QP exactly at
one point, since xQ ≤ xendpoint ≤ xP and tP ≤ tendpoint ≤ tQ. We pick an interior
point in the small line segment whose boundary is the union of the two intersection
points and declare it as a new subdividing point on QP . Let P ∗ denote the chosen
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point. The sliding triangles intersecting at the point P ∗ are clearly smaller than
the one with the top vertex P and they do not contain the endpoint. In case that
T (P ) contains two of the endpoints, we introduce two new subdividing points on
QP each chosen as above and none of the corresponding sliding triangles contains
the endpoints. �

Q

P

subdivision

Q

P

P*P*

Figure 17. A further subdivision of the up-arc QP

5.2. Braidoiding algorithm. We now present our algorithm for obtaining a la-
beled braidoid diagram from a (multi)-knotoid diagram K. The algorithm runs as
follows.

Step 1: Preparation for eliminating the up-arcs

(1) The diagram is marked with subdividing points as explained in Section
5.1.2 so that the endpoint triangle condition is satisfied. It is furthermore
assumed to satisfy some general positioning conditions, which can be en-
sured by ‘small’ isotopy moves, namely

(2) no arcs is vertical or horizontal,
(3) no subdividing points are vertically aligned with each other unless they

share a common edge and neither with the endpoints or with any of the
crossings,

(4) the endpoints of K are assumed to lie on arcs that are directed downward.

Step 2: Applying the braidoiding moves

We order the up-arc and finally apply the braidoiding moves to each up-arc of
K in the given order.

Figure 18 illustrates for the braidoiding algorithm with a concrete example.
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U2
U3

U4
U1

u u u u u u u u

 arrange the endpoints

  1.subdivide K 

           apply
braidoiding moves

isotopy

1 2 3 4 2.order and label 
   the up-arcs

Figure 18. An illustration for the algorithm

5.2.1. Obstructions for the braidoiding algorithm and resolutions. Now, we discuss
some bugs of the braidoiding algorithm. In some cases, as exemplified in Figure
19, the algorithm is obstructed by a clasp occuring in the sliding triangle of an up-
arc. We see in the figure that the braidoiding move applied on the second-ordered
up-arcs labeled with o and u respectively, cannot be completed, due to the clasps
in their sliding triangles. It can be verified by checking all possible positionings,
labelings and orderings of any two up-arcs that this type of obstruction may occur
only if:

• the top-most point of the first-ordered up-arc intersects the sliding triangle
of the second-ordered up-arc and,

• two up-arcs with intersecting sliding triangles, are labeled the same.
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o2

o1

o2o1

    braidoiding 
   in given order

u2

u1

 u2u1

     braidoiding 
   in given order

a clasp

a clasp

Figure 19. Obstructions for applying braidoiding moves

5.2.2. Resolutions of the obstructions. Due to the conditions creating obstructions,
the resolutions for them can be:

• swapping the ordering of the up-arcs; see Figure 20,

• changing the label of the free up-arc if there is a free up-arc involved in an
obstruction; see Figure 21,

• subdividing the up-arcs further to have disjoint sliding triangles; see Figure
22.

o2

o1

braidoiding in
 given order

o2 o1

Figure 20. Swapping the order of up-arcs repairs the obstruction
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braidoiding in
 given order

u1

o2

u1

o2

u1 o
2

Figure 21. Changing the label of the free up-arc repairs the obstruction

o1
o
2

a new subdividing point o1 o3o2

o3

braidoiding

Figure 22. Adding a subdividing point to the upper up-arc re-
pairs the obstruction

5.2.3. The classical triangle condition. We can make the braidoiding algorithm a
simultaneous algorithm that is processed independently of the ordering of the up-
arcs, by imposing the following condition.

Definition 7. Two sliding triangles are said to be adjacent if the corresponding
up-arcs have a common subdidiving point, and non-adjacent otherwise.

The classical triangle condition says that non-adjacent sliding triangles are al-
lowed to intersect only if the up-arcs of the triangles have different labels. The
classical triangle condition can always be satisfied by the following lemma.

o

u but not

o

o

Figure 23. The classical triangle condition

Lemma 3. Let K be a knotoid diagram. There exists a subdivision of K satisfying
both the classical triangle condition and the endpoint triangle condition.
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Proof. This lemma is proved similarly with Lemma 1 in [31]. For completeness, we
adapt the proof here for the knotoid case. Let d1 be the minimum distance between
any two crossings appearing on the up-arcs of K. Choose some r, 0 < r < d1 so
that the disk of radius r centered at a crossing contained in an up-arc, intersects
the up-arc at only four local strands around the crossing. Let d2 be the minimum
distance between any two disjoint points that are located outside the disks of radius
r around the crossings and on different segments. Letting 0 < ε < 1

2min{d1, d2}
be the distance between any two subdivision points on K provides a subdivision of
K satisfying the classical triangle condition and also the triangle condition for the
endpoints. Each sub-arc of length ε is also labeled according to the crossing type
it contains, or if some become free, they are labeled freely. �

5.2.4. Proof of Theorem 1. With the discussion above we know that there is always
a choice for ordering and labeling of up-arcs of a (multi)-knotoid diagram and,
moreover that we can impose the classical triangle condition to make the algorithm
free of ordering. This is equivalent to saying that the braidoiding moves can be done
all simultaneously and it is sufficient for ensuring that the algorithm terminates in
a finite number of steps and always results in a labeled braidoid diagram. Finally,
it is clear from Figure 15 that if we apply closure to the corresponding strands
according to their label, then each pair can be contracted back to the initial up-arc.
Such contractions utilize the isotopy moves for knotoids, thus the closure of the
resulting braidoid diagram is isotopic to the (multi)-knotoid diagram we started
with. QED

Remark 1. In [18] we present another braidoiding algorithm which is also induced
by the same braidoiding moves. The main difference of that algorithm from the one
we describe in this paper is that it firstly eliminates each up-arc of a knotoid diagram
that contains a crossing by a 90-degree or 180-degree rotation of the crossing. The
braidoiding moves are applied to the resulting up-arcs that are all free up-arcs.
Furthermore, since the labels of the free up-arcs are not forced they can be labeled
only u. Applying the braidoiding algorithm on such a knotoid diagram generates a
labeled braidoid diagram whose strands are all labeled u. This induces the idea of
closing braidoid diagrams in a uniform way, that is, by using only underpassing arcs
that run in arbitrarily close distance to the vertical lines of pairs of corresponding
ends, for connecting them. We call this closure the uniform closure.

The above remark leads to the following result.

Theorem 2. [19, 18] Any multi-knotoid diagram in R2 is isotopic to the uniform
closure of a braidoid diagram.

6. L-equivalence of braidoid diagrams

The L-moves were originally defined for classical braid diagrams [30, 31, 32] by
the second listed author, and they were used for proving a one-move analogue of
the classical two-move Markov theorem [34, 39, 9, 8, 35, 36, 10]. In the sequel, we
adapt the L-moves for braidoid diagrams and use them for formulating a geometric
analogue of the classical Markov theorem.

6.1. The L-moves.

Definition 8. An L-move on a labeled braidoid diagram B is the following oper-
ation:
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(1) Cut a strand of B at an interior point which is not vertically aligned with
a braidoid end, an endpoint or a crossing of B. The existence of such point
can be ensured by a general positioning argument.

(2) Pull the resulting ends away from the cut-point to top and bottom respec-
tively, keeping them vertically aligned with the cut-point, so as to create a
new pair of braidoid strands with corresponding ends. The new strands run
both entirely it over or under the rest of the braidoid diagram depending on
the type of the L-move applied. There are two types of L-moves, namely
Lover and Lunder-moves, denoted by Lo and Lu respectively. An Lo-move
comprises pulling the resulting sub-strands entirely over the rest of the di-
agram. An Lu-move comprises pulling the sub-strands entirely under the
rest of the diagram. See top row of Figure 24.

(3) After an L-move applied on a labeled braidoid diagram, the new pair of
corresponding strands gets the labeling of the L-move: If the strands are
obtained by an Lo-move then they are labeled o and if they are obtained by
an Lu-move then they are labeled u. Then, as can be verified by Figure 24,
the closure of a pair of labeled braidoid strands resulting from an L-move
is isotopic to the initial arc.

Lo-move

o

o

Lu-move

u

u

closureclosure

Figure 24. L-moves and the closures of the resulting strands
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In order to formulate a braidoid equivalence in analogy to the classical braid
equivalence utilized in Markov theorem we also need to discuss the fake forbidden
moves.

Definition 9. We define a fake forbidden move on a labeled braidoid diagram B to
be a forbidden move on B which upon closure induces a sequence of fake forbidden
moves on the resulting (multi-)knotoid diagram. A fake swing move is a swing
move which is not restricted, in the sense that the endpoint surpasses the vertical
line of a pair of corresponding ends but in the closure it gives rise to a sequence
of swing and fake forbidden moves on the resulting (multi-)knotoid diagram. See
Figure 25 for an example of a fake swing move and a fake forbidden move on a
labeled braidoid diagram.

uo uo

a fake swing move

uo

a fake forbidden move

Figure 25. A fake swing and a fake forbidden move

Definition 10. The L-moves together with labeled braidoid isotopy moves and
fake swing moves generate an equivalence relation on labeled braidoid diagrams
that is called the L-equivalence. The L-equivalence is denoted by ∼L.

The labeled braidoid that is associated to a knotoid K via a braidoiding al-
gorithm, is not unique up to the braidoid isotopy. Precisely the labeled braidoid
depends on the choices made for bringing the knotoid diagram to satisfy the general
position requirements before starting the braidoiding algorithm, such as: arrange-
ment of the endpoints, subdivision chosen on the arcs of the knotoid diagram and
the labeling of the free up-arcs. Moreover, the knotoid diagram is subject to kno-
toid isotopy moves. We shall show that the labeled braidoid diagrams that are
associated to K, are independent of algorithmic choices and isotopy moves up to
L-equivalence.

Before stating our theorem we give the following definition.

Definition 11. A (multi)-knotoid diagram K in the xt-plane, with a subdivision
and labeling on its up-arcs, is said to be in general position if

• it has no vertical or horizontal arcs,
• no subdividing point or endpoint is vertically aligned with a subdividing

point, a crossing or an endpoint,
• the arcs adjacent to the endpoints of K are down-arcs,
• no sliding triangle encloses an endpoint,
• sliding triangles satisfy the classical triangle condition.

Note that a (multi)-knotoid diagram can be always brought to general position
by small ∆-moves.
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Theorem 3. [19](An analogue of the Markov theorem for braidoids) The closures
of two labeled braidoid diagrams are isotopic (multi)-knotoids in R2 if and only if
the labeled braidoid diagrams are related to each other via L-equivalence moves.

Proof. For the proof of Theorem 3, we assume that (multi)-knotoid diagrams are
in general position.

The ‘if’ part is clear from the definitions of L-moves and fake swing moves. More
precisely, let B1, B2 be two labeled braidoid diagrams related to each other by an L-
move. Let the arc, illustrated in Figure 24, be a segment of a strand of B1 on which
an L-move is applied. It can be observed by the same figure that the closure of the
resulting strands labeled accordingly to the type of the L-move applied, is isotopic
to this arc. This implies that the closures of B1 and B2 are isotopic. From this,
the closure map extends to a well-defined map clL on the set of all L-equivalence
classes of labeled braidoids.

clL : {L-classes of labeled braidoid diagrams}→ {Multi-knotoids in R2}.

For showing the ‘only if’ part, we need to show that the map clL is a bijection.
We adapt these parts here and check the cases involving the endpoints. For this we
first show the braidoiding algorithm induces a well-defined mapping br,

br: {Multi-knotoids in R2} → {L-classes of labeled braidoid diagrams},

that associates a (multi)-knotoid K in R2 to the L-class of the braidoid diagram
obtained from any representative of K by the braidoiding algorithm. We call this
map the braidoiding map.

In order to show the mapping br is well-defined we need to show that, up to L-
equivalence, the resulting labeled braidoid diagram is independent of: the choices
made for bringing a knotoid diagram into general position, choices of subdividing
points for the up-arcs, labelings of free up-arcs, the Ω-moves of knotoid diagrams.
The parts of the proof of Theorem 3 not involving the endpoints are analogous to
the case of classical knots and braids [30, 31].

Lemma 4. Let K be a (multi)-knotoid diagram in R2 with a subdivision that sat-
isfies the triangle conditions. Adding a subdividing point to an up-arc of K and
labeling the new up-arcs same as the initial labeling yields an L-equivalent labeled
braidoid diagram.

Proof. We first note that addition of a subdividing point does not violate the trian-
gle conditions. Let QP denote an up-arc of K as depicted in Figure 26. First let us
assume that the vertical line passing through an endpoint of K does not intersect
QP . In this case, we can add a new subdividing point on QP and apply braidoid-
ing moves at that point and the point P . The proof for showing that the resulting
braidoid diagram is L-equivalent to the one obtained by applying a braidoiding
move at the top-most point P follows similarly as for classical braid diagrams. The
reader is directed to [31] for details.

Now let us assume that the vertical line passing through an endpoint of K
intersects with QP at some point on QP . Then QP can be seen as the union of
two sub-arcs joined at the intersection point and one of which contains the point P .
The sub-arcs can be re-labeled accordingly to the initial labeling. By the classical
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argument discussed above, if a new subdividing point is added on QP on the sub-
arc containing P , then applying a braidoiding move at this point results in a labeled
braidoid diagram that is L-equivalent to the labeled braidoid diagram obtained by
applying a braidoiding move at the point P . Suppose now that a new subdividing
point P1 is chosen on the sub-arc that does not contain the point P . As we can
verify in Figure 26, the labeled braidoid diagram resulting from a braidoiding move
applied at the point P can be taken to the braidoid diagram resulting from the latter
subdivision (that is by applying braidoiding moves at the points P and P1) by an
L-move that is applied at the point Q∗. Here the point Q∗ denotes the intersection
point of the vertical line passing through P1 and the lower strand containing Q that
has been obtained by the initial braidoiding of QP . Note that a neighborhood of
Q containing the point Q∗ is perturbed to slope slightly downwards for enabling
application of the L-move. �

Q

P

P1Q

P

Q

o

o o

o

P

subdivision 

Q

o

P

P1

o

Lo-move at Q*

Q*

braidoiding move braidoiding move

Figure 26. Adding a subdividing point on the up-arc yields L-
equivalence

Lemma 5. Labeling a free up-arc either with o or u does not change the resulting
labeled braidoid diagram up to L-equivalence.

Proof. The proof is illustrated in Figure 27 and it goes in analogy with the classical
case. In the figure, a free up-arc QP is labeled both with u and o. For simplicity
we first assume that the sliding triangle of QP is also free of any arcs.

We start by applying a braidoiding move on QP labeled with u at the point P
to obtain a pair of braidoid strands. Then we apply an Lo-move at a point (the
point P ∗ in the figure) that is arbitrarily close to P so that there is no endpoint or
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braidoid end in the vertical strip defined by P and P ∗. Let Q∗ be the point where
the vertical line passing at P intersects the resulting lower piece of the sub-strand
containing Q. We assume that the piece of strand containing Q∗ slopes downward.
Deletion of an Lu-move at the point Q∗ cancels the pair of braidoid strands labeled
u. By the same figure we can verify that the resulting labeled braidoid diagram
can be turned into to the labeled braidoid diagram obtained by a braidoiding move
on QP when it is labeled with o, by a sequence of L-moves: First by applying an
Lo-move at Q∗ and then deleting an Lo-move to cancel one of the pairs of braidoid
strands.

The sliding triangle of the up-arc may intersect with other arcs of the diagram as
illustrated in Figure 28. In this figure, we show a case where a free up-arc labeled
with u intersects the sliding triangle of the free up-arc labeled with o. By using
Lemma 4, we first subdivide the free up-arc labeled with o into small enough sub-
arcs to make all disks of the corresponding sliding triangles free of arcs. We now
re-label each of the free up-arcs resulting from the new subdivision with o. By the
discussion above, we know that the diagram obtained by applying braidoiding moves
at each added subdividing points on the up-arc is L-equivalent to the one obtained
by applying braidoiding moves to the up-arc in the third row where each sub-arc
is labeled with u. Finally, again by Lemma 4 we know that if we delete all the
added subdividing points on the up-arc keeping the initial subdividing points and
the label u then by a braidoiding move we obtain a labeled braidoid diagram that
is L-equivalent to the initial labeled braidoid diagram obtained by a braidoiding
move applied on the up-arc labeled with u. Notice that, to ensure the classical
triangle condition in the final step we also change the labeling of the intersecting
arc from u to o. �
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Lo-move deletion of an
    Lu-move 
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braidoiding move

Figure 27. Different labels on a free up-arc
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Figure 28. Re-labeling the free up-arcs

Corollary 1. If we have an appropriate choice of relabelling the up-arcs resulting
from a further subdivision on K then by Lemmas 4 and 5, the resulting labeled
braidoid diagrams are L-equivalent.

Lemma 6. Two labeled braidoid diagrams that are obtained with respect to any two
subdivisions S1, S2 on a knotoid diagram K that satisfy the triangle conditions, are
L-equivalent to each other.

Proof. It is clear that any subdivision further than S1 or S2 satisfies both triangle
conditions. Consider the further subdivision S1 ∪ S2 of both S1 and S2 on K. By
Lemmas 4 and 5, the labeled braidoid diagram that results from the subdivision S1∪
S2 is L-equivalent to the labeled braidoid diagrams that result from the subdivision
S1 and S2. Since the L-equivalence is an equivalence relation, the lemma follows.

�

Finally we shall show the L-equivalence under the Ω-moves.

Lemma 7. Two (multi-)knotoid diagrams in R2 are related to each other by planar
isotopy and Ω- moves only if the corresponding labeled braidoid diagrams are related
to each other by labeled braidoid isotopy moves, L-moves, fake swing moves or fake
forbidden moves.

Proof. Let us start with the observation that by imposing the classical triangle con-
dition, we can assume that the knotoid isotopy moves take place without interfering
with the braidoiding process of the rest of the diagrams that lie outside the local
regions of the moves. In fact we can assume the up-arcs outside the move disks are
all turned into braidoid strands and only the arcs lying in the move disks are left
for elimination.

Examining the Ω1, Ω2 and Ω3-moves follows similarly with the examination of
Reidemeister moves on classical knots/links under the braiding moves [32, 31]. Here
in Figure 29 we give an illustration for the Ω1-move away from the endpoints and
how it is transformed to an L-move under a braidoiding move.
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uo uo

isotopy

o

Ω 1 

braidoiding

o u
o

delete an Lu-move isotopy

o

Figure 29. An Ω1-move under braidoiding

In this setting, it is crucial to examine specifically the swing moves displacing
the endpoints of a knotoid/multi-knotoid diagram. A swing move may displace an
endpoint that lies on a down-arc and in a way that the endpoint does not change its
position with respect to a vertical line passing through a cut-point in the diagram
then the resulting (labeled) braidoid diagrams are clearly related to each other by
a restricted swing move.

A swing move may move an endpoint so that the swinging arc changes from
being a down-arc to being an up-arc by keeping the endpoint at the same vertical
alignment as in Figure 30. In the braidoiding process, the down-arc is kept but a
braidoiding move is applied on the resulting up-arc. It can be verified by the figure
that the resulting labeled braidoid diagrams obtained from two knotoid diagrams
which are related by such swing move, are related to each other by an L-move. See
Figure 30. Note that the points P and P ∗ shown in the figure that are chosen for
applying the Lo-move on the resulting braidoid diagram and the braidoiding move
on the resulting knotoid diagram, respectively, are vertically aligned.

A swing move may also cause the endpoint to change its position with respect to
a vertical line passing through a cut-point on the diagram as illustrated in Figure 31.
This means that the endpoint of the swinging arc in the resulting labeled braidoid
diagram crosses the vertical line passing through the new pair of corresponding
braidoid ends. This situation can be examined in two separate cases. One case is
that the swinging arc is a down-arc and remains as a down-arc during the move.
In this case, no braidoiding move applies on the arc and the resulting braidoid
diagrams are related to each other by a fake forbidden move (recall Definition 9).
The other case is that the swinging arc is an up-arc and the endpoint is displaced
with respect to a vertical line passing through a cut-point lying on some up-arc
which can be the swinging arc itself. In this case, we apply a last braidoiding
move on the swinging arc before and after the move. Then the comparison of the
resulting (labeled) braidoid diagrams is reduced to the previous case and they are
related to each other by a fake swing move when the cut-point lies on the swinging
arc or a fake forbidden move as discussed in the previous case.

From the above discussion we can deduce Lemma 7. �
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braidoiding move 

o

o

Lo-move at P

P

at P*
P*

Figure 30. A swing move changing a down-arc to an up-arc

swing move

braidoiding move braidoiding move

u u

fake forbidden move

u u

Figure 31. A swing move displacing an endpoint with respect to
a cut-point

Lemma 8. A fake forbidden move on a labeled braidoid diagram is generated by
L-moves, planar isotopy moves and fake or restricted swing moves.

Proof. The proof can be verified by Figure 32. The figure illustrates a finite se-
quence of planar isotopy moves, addition/deletion of Lu-moves and restricted swing
moves that gives the fake forbidden move. This can be varied to include Lo-moves
(when the swinging arc goes under a braidoid strand) and fake swing moves (when
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the swinging arc swings across the vertical line determined by the braidoid end that
is connected to the swinging endpoint with the swinging arc, see the first instance of
Figure 25. Figure 33 also illustrates the statement on a complete labeled braidoid
diagram.

Figure 32. A fake forbidden move via L-moves and a swing move

uo uo uo u uu uo u

a fake swing move  
            and
a planar isotopy move

an Lu-move  at P

P

delete an Lu-move planar isotopy

Figure 33. A fake forbidden move on a labeled braidoid diagram

�

Lemma 9. Two (multi-)knotoid diagrams in R2 are related to each other by planar
isotopy and Ω-moves only if the corresponding labeled braidoid diagrams are L-
equivalent.

Proof. The lemma follows from Lemma 7 and Lemma 8. �
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From Lemma 6 and Lemma 9 it follows that the braidoing map br is a well-
defined map. Lastly it needs to be shown that br is the inverse map of clL. Let

B be a labeled braidoid diagram. It is clear that the closure diagram of B, B̂, is
a knotoid diagram in general position whose only up-arcs are the connection arcs

taking place in closing B. The braidoiding algorithm eliminates each up-arc of B̂
and turns it into a labeled braidoid diagram which is isotopic to B. Thus,

br ◦ clL = id.

Given a knotoid diagram K in general position, by applying the braidoiding algo-
rithm we obtain a labeled braidoid diagram B. Clearly the closure of any labeled
braidoid diagram that is L-equivalent to B is isotopic to K. Hence it follows

clL ◦ br = id.

By the above the proof of Theorem 3 is now completed. �

7. From braidoids to braids

In this section we show another application of the L-moves, namely the induced
relation between the set of all braidoid diagrams and the set of all classical or virtual
braid diagrams.

We define a virtual braidoid diagram to be a braidoid containing classical as
well as virtual crossings and a virtual braidoid to be the equivalence class of virtual
braidoid diagrams under the moves of the braidoid diagrams extended by the virtual
braid moves. For more on virtual braids and the virtual braid group the reader may
consult [25, 26, 6] and references therein. Further, for analogues of the Alexander
and the Markov theorems for virtual knots and virtual braids see [27, 23].

In analogy to knotoids closing to classical or virtual knots, a braidoid resp. a
virtual braidoid diagram is closed to a classical resp. a virtual braid diagram by
connecting its endpoints with a simple arc in the plane. There are only finitely many
intersection points between the connecting arc and the braidoid diagram, which are
transversal double points endowed with under, over resp. virtual crossing data. By
a classical topological argument, the arc connecting the endpoints of a braidoid
diagram is unique up to isotopy in the classical or in the virtual sense.

7.1. The underpass closure and the virtual closure. We fix the connecting
arc to be passing under any other arc. In order to receive as outcome a braid
diagram we must also ensure the braid monotonicity condition. There can be two
cases for the connection. If the head of the braidoid diagram appears before its
leg (as t increases) then a downward directed arc can be chosen to connect them,
see the top row of Figure 34 for an abstract illustration. If, however, the leg of
the braidoid diagram appears before its head then any arc connecting them is an
arc that is directed upward, an up-arc, in the resulting tangle diagram. In this
case, we apply a braiding move on the connecting arc which turns it into two new
corresponding braid strands. See the bottom row of Figure 34 for an abstraction
of this case.

Definition 12. For any given braidoid diagram we define the underpass closure
of its endpoints as follows. If the head is in a relatively higher position than the
leg, we join them together with a straight under-passing arc. If the leg is located
higher than the head then we extend both endpoints by a pair of corresponding
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underpassing braid strands, emanating from the leg and the head respectively, and
vertically aligned with a point on the straight arc connecting the two endpoints.

The above apply analogously for the case where the connecting arc is passing
virtually any other arc. In this case we obtain in the end a virtual braid. and call
the closure the virtual closure. Especially in the case where the leg of the braidoid
diagram appears before its head we eliminate the joining up-arc by a virtual braiding
move, whereby all crossings in the resulting new pair of strands are virtual, see [27].

Figure 34. The underpass closure

7.2. The induced mappings. We shall now establish that the underpass closure
(resp. the virtual closure) defined on braidoid diagrams induces a well-defined map
on the set of braidoids (that is, isotopy classes of braidoid diagrams). We have the
following proposition.

Proposition 1. The underpass closure is a well-defined surjective map from the
set of braidoids to the set of L-equivalence classes of classical braids. Similarly, the
virtual closure is a well-defined surjective map from the set of virtual braidoids to
the set of virtual L-equivalence classes of virtual braids.

Proof. It is straightforward to show that the underpass closure is a surjective map.
Indeed, by cutting out from a given braid diagram an open arc that either con-
tains no crossings or it is an underpassing arc (resp. a virtual arc), we obtain
a braidoid diagram whose underpass closure (resp. virtual closure) is clearly the
original braidoid (resp. virtual braidoid) diagram.

Consider a braidoid isotopy on a given braidoid diagram (resp. virtual braidoid
isotopy on a virtual braidoid diagram). The isotopy may keep the endpoints fixed
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or it may change their relative vertical or horizontal positions. If the isotopy keeps
the endpoints fixed then after the underpass (resp. virtual) closure this isotopy
clearly transforms into braid isotopy (recall Section 3.2). Suppose that a swing
move on one of the endpoints takes place. If the connecting arc is a down-arc
then the corresponding braid diagrams clearly differ by braid isotopy (resp. virtual
braid isotopy). If, however, the connecting arc is an up-arc then the swing move
may change the vertical level (the ordering amongst the strands) of the resulting
two braid strands. For an illustration see Figure 35. Yet, the two resulting braids
will differ by conjugation, which is known to be a special case of L-equivalence [32]
(resp. virtual L-equivalence [27]).

Suppose now that a vertical move on the endpoints takes place. If this move does
not change the relative heights of the endpoints, it is clear that the connecting arcs
are isotopic. If, however, the move changes the relative heights of the endpoints
then the connecting arc changes from a down-arc to an up-arc or vice versa, see
Figure 36. In this case, the two resulting braid diagrams differ by an Lu- move
(resp. virtual L-move) applied on the connecting down-arc of the one diagram and
at the same vertical level as that of the braiding move applied on the connecting
up-arc of the other diagram.
By the arguments above the proof of Proposition 1 is completed. �

swing move

1 n-1 1 n-1

1 n 1 n

braiding moves at different points

braid conjugation

Figure 35. A swing move transforms into an L-move on the un-
derpass closure
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1

1 n-1

1 n-1

vertical move

n-1

1 n-1

underpass closure

 1     ni*

braiding moveLu-move

Figure 36. A vertical move transforms into an L-move on the
underpass closure

8. Discussion

The theory of braidoids is a new diagrammatic setting extending the classical
braid theory and giving rise to many new problems; the underlying algebraic struc-
ture for braidoids is not known yet and we will examine in a subsequent paper.
However, we know how to partition a braidoid diagram into smaller diagrams that
we call elementary blocks [18, 19]. Knots and knotoids have been used for topo-
logical tabulation of proteins which are open molecular chains. In [18] we suggest
that braidoids can set up an algebraic way for tabulating proteins by the use of
elementary blocks.
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35430 İzmir, TURKEY and University of Goettingen Mathematics Institute, Bunsen-
strasse 3-5 37073 Goettingen, Germany

Email address: neslihangugumcu@iyte.edu.tr, neslihangueguemcue@mathematik.uni-goettingen.de

School of Applied Mathematical and Physical Sciences National Technical Univer-

sity of Athens Zografou Campus GR-15780 Athens, GREECE

Email address: sofia@math.ntua.gr

URL: http://www.math.ntua.gr/∼sofia/


	OWP2020_17_Deckblatt
	OWP 2020 - 17
	Neslİhan Gügümcü and Sofia Lambropoulou
	Braidoids

	OWP2020_17_Deckblatt_verso
	OWP2020_17_gügümcü

