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What is a knotoid diagram?

A knotoid diagram in S2 or in R2 is an open-ended knot diagram with
two endpoints that can lie in different regions of the diagram.



What is a knotoid diagram?

Definition (Turaev)
A knotoid diagram K in an oriented surface Σ is an immersion

K : [0,1]→ Σ such that:

1 each transversal double point is endowed with under/over data,
and we call them crossings of K,

2 the images of 0 and 1 are two disjoint points regarded as the
endpoints of K. They are called the leg and the head of K,
respectively.

3 K is oriented from the leg to the head.



What is a knotoid?

Definition
A knotoid in Σ is an equivalence class of the knotoid diagrams in Σ up
to the equivalence relation induced by the Ω-moves and isotopy of Σ.

Ω1

Ω2

Ω3

Ω-moves

Φ+ Φ−

Forbidden knotoid moves



Extending the definition of a knotoid

Definition (Turaev)
A multi-knotoid diagram in an oriented surface Σ is a generic
immersion of a single oriented segment and a number of oriented
circles in Σ endowed with under/over-crossing data.
A multi-knotoid is an equivalence class of multi-knotoid diagrams
determined by the equivalence relation generated by Ω-moves and
isotopy of the surface.

A multi-knotoid diagram

We mostly focus on the case Σ = S2 or R2.



From knotoids to classical knots

There is a surjective map,

ω−: { Knotoids } → { Classical knots }
induced by connecting the endpoints of a knotoid diagram with an
underpassing arc.
⇒ Invariants of classical knots can be computed on knotoid
representatives.

Let κ be a knot and K be a knotoid representative of κ . Then
π1(κ) = π(K) (Turaev).
A knot is tricolorable if and only if it admits a tricolorable
knotoid representative.



What is an invariant of a knotoid?

Definition
Let M denote a set of mathematical objects. An invariant of knotoids
is a mapping

I:{Knotoids}→M,

assigning to equivalent knotoid diagrams the same value.

Some of the former knotoid invariants given by Turaev:
The bracket polynomial
2-variable extended bracket polynomial: Knotoids in S2 have
been classified up to 5 crossings, by Bartholomew using this
invariant.
3-variable bracket polynomial: We have used this polynomial for
our analysis of protein chains via planar kntooids.



From classical knots to knotoids

There is an injective map,
α: {Classical knots} → {Knotoids in S2},

induced by deleting an open arc which does not contain any
crossings from an oriented classical knot diagram.

equivalent

⇒ The theory of knotoids in S2 is an extension of classical knot
theory.



From classical knots to knotoids

Definition
A knotoid in S2 that is in the image of α , is called a knot-type knotoid.
A knotoid that is not in the image of α , is called a proper knotoid.

{Knotoids in S2}={Knot-type knotoids}∪{ Proper knotoids}

Knot-type knotoids carry the same topological information with
corresponding classical knots.

A knot-type knotoid A proper knotoid



The height of a knotoid

Definition (Turaev)
The height of a knotoid diagram is the minimum number of crossings
created by the underpass closure.
The height of a knotoid K is defined as the minimum of the heights,
taken over all equivalent knotoid diagrams to K.
The height is a knotoid invariant.

A knotoid has zero height if and only if it is a knot-type knotoid.

≡

A knotoid has non-zero height if and only if it is a proper kno-
toid.



How do we compute the height?

Question

Apparently, the first diagram has height 1 and the second one
has height 2. But are there some equivalent diagrams to the
knotoids above with less height?



Virtual knots

Definition (Kauffman)
A virtual knot k is an embedding,

k : S1→ Σg≥0× [0,1].

A virtual knot diagram is a generic projection of k in Σg with the data
of under/over assigned to each self-crossings.

virtual crossings



Definition (Stable-equivalence)
The virtual knot diagrams in two surfaces are said to be
stably-equivalent if one is related to the other one by the three
Reidemeister moves in the surfaces, orientation preserving
homeomorphisms of the surfaces and addition/removal of 1- handles
in the complements of the diagrams.

Definition
The genus of a virtual knot is the minimum genus among the surfaces
that the knot has a diagram without any virtual crossings.



Virtual knotoids

The notions of virtual knot theory naturally extends to knotoids.

Definition
A virtual knotoid diagram is a knotoid diagram in S2 (or in R2) with
classical and virtual crossings.
A virtual knot is an equivalence class of virtual knotoid diagrams up
to the equivalence relation generated by the Ω-moves and the detour
move.



The following theorem was stated by Turaev.

Theorem (G.,Kauffman)
The theory of virtual knotoids is equivalent to the theory of knotoid
diagrams in higher genus surfaces considered up to Ω-moves in the
surfaces, isotopy of the surfaces and addition/removal of handles in
the complement of knotoid diagrams.



From knotoids to virtual knots

There is a well-defined map called the virtual closure map,

v: {Knotoids in S2} → {Virtual knots of genus ≤ 1 },

induced by associating a knotoid diagram to the virtual knot diagram
obtained by connecting the endpoints of the knotoid diagram in the
virtual fashion.



The virtual closure map

The virtual closure map is not injective:

R
Y

G

R
R

R

A pair of nonequivalent knotoids with the same virtual closure



The virtual closure map

Proposition (G.,Kauffman)
The virtual closure map is not surjective.

The virtual knot below is a genus 1 knot that is not in the image of v.

We showed this by examining the surface-state curves of the
diagram in torus.



Yet, since the virtual closure map is well-defined, any virtual knot
invariant can be defined as an invariant of knotoids through this map.

Let Inv denote an invariant of virtual knots.
Define an invariant of knotoids I by the following formula,

I(K) = Inv(v(K)),
where K denotes a knotoid in S2.
A second notice shows that many virtual knot invariants can be
directly constructed on knotoids.



The affine index polynomial of knotoids

We label each arc of the flat diagram of a knotoid diagram K by an
integer with respect to the following rule:

a

a−1b+1

b

Integer labeling at a flat crossing

Note that the first and the last arc of the diagram can be always
labeled by 0.



The affine index polynomial of a knotoid

Definition
Let c be a crossing of K. Two number outcomes w+(c) and w−(c) are
derived at c which are called positive and negative weights of c:

w+(c) = a− (b+1)
w−(c) = b− (a−1)

where a and b are the labels for the left and the right incoming arcs at
the corresponding flat crossing to c, respectively.
The weight of c is defined as

wK(c) =

{
w+(c) if the sign of c is positive,
w−(c) if the sign of c is negative



The affine index polynomial of a knotoid

Definition (G., Kauffman)
The affine index polynomial of a knotoid K is defined by the equation,

PK(t) = ∑c sign(c)(twK(c)−1)

where the sum is taken over all crossings of a diagram of K.

The affine index polynomial is a knotoid invariant.



The affine index polynomial of a knot-type knotoid is
trivial. This follows by the Jordan curve theorem.
Proper knotoids may have non-trivial affine index
polynomial.

An example:
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The affine index polynomial and the height

Theorem (G.,Kauffman)
The height of a knotoid is greater than or equal to the maximum
degree of its affine index polynomial.



A sketch of the proof

Main Observation: Any crossing determines a loop starting and
ending at that crossing. The algebraic intersection number of the loop
at c with the intersecting arcs is equal to either w−(c) or w+(c).

a

a+1a

a−1 a

a−1

a

a+1

a

a+1

Entering Value−Exit Value = w−(C) Entering Value−Exit Value = w+(C)

C C

The loop at a maximal weight crossing reveals information about the
height of the diagram when self-intersections on the loop are
smoothed in the oriented way.



An illustration

An illustration:
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P(K1) = t+ t−1−2.
P(K2) = t2 + t+ t−1 + t−2−4.
P(K3) = t3 + t2 + t+ t−1 + t−2 + t−3−6.

These are some knotoids whose heights are detected by the affine
index polynomial.

We have infinitely many knotoids whose heights are detected by
the affine index polynomial.



An extension of the bracket polynomial:
The arrow polynomial

The construction of the arrow polynomial for knotoids is based on the
oriented state expansion of the bracket polynomial.

= A + A−1

= A−1
+ A

K = (−A2−A−2)K

Oriented state expansion



Reduction rules for the arrow polynomial

To reduce the number of cusps in a state component we have the
following rules:

Λ1 Λ2



The arrow polynomial

Definition (G.,Kauffman)
We define the arrow polynomial of a knotoid diagram K as,

A [K] = ∑S< K|S >(−A2−A−2)‖S‖−1Λi

where < K|S > is the usual vertex weights of the bracket polynomial,
‖S‖ is the number of components of the state S and Λi is the variable
associated to the long segment component of S with irreducible
zig-zags.

Theorem (G.,Kauffman)
The normalization of the arrow polynomial (multiplication by
(−A−3)−wr(K)) is a knotoid invariant.



An example for computing the arrow polynomial

A [ = A2 +

A

A

A

B

+ B

A

+ A−2
]

= A2 +(1−A4)Λ1

B

B

= A2
+ 2 + A−2 d



The arrow polynomial and the height

Definition
The Λ-degree of a summand of the arrow polynomial of a knotoid
which is in the form, AmΛi is equal to i. The Λ-degree of the arrow
polynomial of a knotoid is defined to be the maximum Λ- degree
among the Λ-degrees of all the summands of the polynomial.

Lemma (G.,Kauffman)
The arrow polynomial of a knot-type knotoid has zero Λ-degree.

Theorem (G.,Kauffman)
The height of a knotoid K in S2 is greater than or equal to the
Λ-degree of its arrow polynomial.



Idea of the proof

The proof is based on the following observations:

virtual closure

Λ1 Κ1

The height of a knotoid diagram is equal to the virtual crossing
number of its virtual closure.
The relation of the virtual crossing number of virtual knots and
the K-degree of the arrow polynomial for virtual knots:

Theorem (Dye,Kauffman)
The minimum number of virtual crossings of a virtual knot is greater
than or equal to the K-degree of the arrow polynomial of the knot.



Comparison on the two lower bounds

P(K) = (t0−1)− (t−1)− (t−1−1)+(t−1)+(t−1−1) = 0
A [K1] =
−A−3 +A−2A5 +A9 +Λ1(A−9−2A−5 +2A−1−2A3 +A7).

⇒ The height of the knotoid is 1 by the arrow polynomial.



Further on the height
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PK(t) = 2t+2t−1−4
A [K] = (−A−5 +2A−1−A3−A7)+2(A−A5)Λ1.

⇒ 1≤ h(K)≤ 2. What is the height of K?

Theorem (G.,Kauffman)
Minimal diagrams of knot-type knotoids have zero height.

Conjecture
Minimal crossing number of knotoids in S2 is admitted on minimal
height diagrams.



Comparing knotoids in S2 and R2

There is a surjective map,

ι : The set of knotoids in R2→ The set of knotoids in S2

which is induced by ι :R2↪→S2. This map is not injective.

Nontrivial planar knotoids which are trivial in S2



A geometric interpretation for planar knotoids

Two open space curves with their ends attached on two parallel lines
are line isotopic if there is an ambient isotopy taking one curve to the
other in the complement of the lines and keeping the ends on the lines.

Theorem (G., Kauffman)
There is a bijection between the set of knotoids in R2 and the set of
line isotopy classes of smooth open oriented curves in R3.



Analyzing the topology of open protein chains
Classical Approaches:

1 Direct closure: Connect the two endpoints of a protein chain
and analyze the type of the resulting knot.

2 Uniform closure: Place the protein chain in a ball
Choose a point on the boundary of the ball and connect two
endpoints of the chain to this point and determine the resulting
knot type.



Analyzing open protein chains using knotoids

A new approach: (joint work with Goundaroulis, Dorier, Stasiak,
Lambropoulou and Kauffman)

1 The protein chain is assumed to lie in a ball of sufficiently large
radius.

2 Each point on the boundary determines a projection plane for the
protein chain.

3 Choose one plane and introduce the lines passing through the
termini and perpendicular to the plane.

4 Simplify the chain by an algorithm eliminating triangles by
never crossing through the lines.

5 Project the chain to the plane along the lines.
6 The resulting diagram is a knotoid diagram. Determine the

knotoid type by using knotoid invariants.



Analyzing the protein 3KZN

Figure: The protein 3KZN



Detecting 3KZN via uniform closure



Detecting 3KZN via knotoids, b:spherical knotoids, c: planar knotoids

Conclusion

Analyzing open protein chains as planar knotoids reveals more
details of their topology.



A topological model for bonded protein chains
Definition: A bonded knotoid diagram is a knotoid diagram with
finitely many edges connecting any two strands of the diagram.
A bonded knotoid is an equivalence class of bonded knotoid diagrams
up to the equivalence relation generated by the bonded moves:

or

Bonded twist move II

bonded Reidemeister III

a b

c

Bonded twist move I

or

d

bonded sliding move I

or

e

bonded sliding move II

f

or



A topological modeling of bonded protein chains

1 Determine a projection direction for the chain with bonds.
2 Draw the two lines passing through the endpoints of the chain

and are perpendicular to the projection plane. Simplify the chain
accordingly to the lines.

3 Project the chain to the plane along the lines. The bonds of the
protein are projected as edges between the corresponding points.
The resulting diagram is a bonded knotoid diagram.

4 Replace the bonding site by a full-twist along the edge if the
neighboring strands are directed anti-parallel.
Otherwise replace the bonding site by a full-twist.
The resulting diagram is a planar (multi-)knotoid diagram.
Determine its type via knotoid invariants.



Twist Insertions



An application

Figure: A projection of the protein chain 2LFK



Conclusion
With this model, we are able to detect three types of protein bonds

sequential bonds
nested bonds
pseudoknot-like bonds

via knotoid invariants such as Turaev loop polynomial and the arrow
polynomial.



The theory of braidoids

(Joint work with Lambropoulou)
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What is a braidoid diagram?

Definition
A braidoid diagram B is a system of a finite number of arcs
embedded in [0,1]× [0,1]⊂ R2 that are called the strands of B.

1 There are only finitely many intersection points among the
strands, which are transversal double points endowed with
over/under data, and are called crossings.

2 Each strand is naturally oriented downward, with no local
maxima or minima, so that it intersects a strand horizontal line at
most once.

3 A braidoid diagram has two types of strands, the classical
strands and the free strands. A free strand has one or two ends
that are not necessarily at [0,1]×{0} and [0,1]×{1}. Such ends
of free strands are called the endpoints of B.
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Examples of braidoid diagrams



Moves on braidoid diagrams

∆-Moves:

A

B
C

A

B Ω2
Ω3Ω0

Vertical Moves: Swing Moves:
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Braidoids

Definition
Two braidoid diagrams are said to be isotopic if one can be obtained
from the other by a finite sequence of Ω-moves, vertical moves and
swing moves. An isotopy class of braidoid diagrams is called a
braidoid.

Definition
A labeled braidoid diagram is a braidoid diagram whose braidoid
ends are labeled with o or u.
A labeled braidoid is an isotopy class of labeled braidoid diagrams up
to the isotopy generated by the Ω-moves.



From a braidoid diagram to a knotoid diagram

We define a closure operation on labeled braidoid diagrams by
connecting each pair of corresponding ends accordingly to their
labels and within a ‘sufficiently close’ distance:

The closure operation induces a well-defined map from the set of
labeled braidoids to the set of planar multi-knotoids.



The analogue of the Alexander Theorem for
braidoids

Theorem (The classical Alexander theorem)
Any classical knot/link diagram is isotopic to the closure of a
classical braid diagram.

Theorem
Any multi-knotoid diagram in R2 is isotopic to the closure of a
labeled braidoid diagram.



From a knotoid diagram to a braidoid diagram
We describe two braidoiding algorithms to prove our theorem.
The idea of the algorithms: To eliminate the up-arcs of a
(multi)-knotoid diagram. We do this by the braidoiding moves:

Q

P

Q

P

Q

P

cut at a point ∆-moves

o

o

o

o

o

closure
Q

P

o

o

Figure: The germ of the braidoiding move and its closure

Observe that the closure of each resulting labeled strand is
isotopic to the initial up-arc.



Preparatory notions for the braidoiding algorithms

Subdivision:

Up-arcs and free up-arcs:

Sliding triangles and the cut point:

Q

P

Q

P

Q

Po

o o



Triangle conditions

Q

P

subdivision

Q

P

P∗

o2

o1

o2o1

    braidoiding 
   in given order

a clasp



Braidoiding algorithm I:

arrange the endpoints

mark with subdividing points 
label and order the  up-arcs

o2
u2

u1

u u o u
1 2 3 4

u u o u
1 2 3 4

braidoiding moves

u4

closure



Braidoiding algorithm II:

1

2

3

4

rotate crossings 1,3 ,4

mark with subdividing points
label and order the  up-arcs

u1

u2

u3
apply braidoiding moves
        in given order

1 2 3
u u u

closure

and the head



A corollary of the braidoiding algoithm II

Definition
A u-labeled braidoid diagram is a labeled braidoid diagram whose
ends are labeled all with u.

There is a bijection:

Labelu :{Braidoids}→{u-labeled braidoids}

induced by assigning to a braidoid diagram a u-labeled braidoid
diagram.



A sharpened version of the theorem

The uniform closure:

u u u

Theorem
Any multi-knotoid diagram R2 is isotopic to the uniform closure of a
braidoid diagram.



Markov theorem for classical braids

Theorem (Markov theorem)
The closures of two braid diagrams b,b′ in ∪∞

n=1Bn, represent isotopic
links in R3 if and only if these braids are equivalent by the following
operations.

Conjugation: For b,b′ ∈ Bn, b′ = gbg−1 for some g ∈ Bn.
Stabilization: For b ∈ Bn, b′ ∈ Bn+1, b′ = σ±n b .

Theorem (One move Markov theorem, Lambropoulou)
There is a bijection between the set of L-equivalence classes of braids
and the set of isotopy classes of (oriented) link diagrams.



From knotoids to braidoids: Braidoid Equivalence
An L-move on a labeled braidoid diagram B is the following
operation:

Lo-move

o

Lu-move

u

closureclosure

Observe that the closure of the pair of strands obtained by an
L-move is isotopic to the original arc.



L-moves can be applied also on endpoints:

Lo-moveLo-move

cut 

o
o

Lo-move

o

at the endpoint



An analogue of the Markov theorem for braidoids

Definition
The L-moves together with labeled braidoid isotopy generate an
equivalence relation on labeled braidoid diagrams that is called the
L-equivalence.

Theorem
The closures of two labeled braidoid diagrams are isotopic
(multi-)knotoids in R2 if and only if the labeled braidoid diagrams are
L-equivalent.



A sketch for the proof

⇒: From our previous observation closure induces a well-defined
map:
clL:{L-eqv.classes of labeled braidoids}→{Multi-knotoids}.
⇐: The braidoiding algorithm I induces a well-defined map,

br:{Multi-knotoids in R2} →{L classes of labeled braidoids}.

For this we need to check:
Static Part: Choices done for applying the algorithm such as
subdivision, labeling of free up-arcs.
Moving Part: The isotopy moves for knotoid diagrams
including the moves displacing the endpoints.



Lemma (Lambropoulou, Rourke)
Adding subdivision points to an up-arc results in L-equivalent
braidoid diagrams.
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Lemma (Lambropoulou, Rourke)
Changing the labeling of a free up-arc results in L-equivalent
braidoid diagrams.
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Corollary
Given any two subdivision S1,S2 of a knotoid diagram K with any
admissible labeling, then the resulting braidoid diagrams are
L-equivalent.



Lemma (Lambropoulou, Rourke)
Applying an Ω-move on a knotoid diagram results in L-equivalent
braidoid diagram.



Lemma
Two ways to turn a vertical up-arc containing an endpoint result in
L-equivalent braidoid diagrams.

isotopy isotopy

o

Q-

P

Q

P

Q+

Q-
   Lo-move
at the endpoint

o o

   delete an Lo-move

o

Q-

o

Q+Q
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at the endpoint

o o

   delete an Lo-move

br br

br



Lemma
Planar isotopies displacing the endpoints result in L-equivalent
braidoid diagrams.

1 2
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P
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Corollary
The map br is well-defined, and also the maps br and clL are inverse
maps of each other.

This completes the proof of our theorem.



Toward an algebraic structure

A braidoid diagram can be seen as a ‘composition’ of blocks of same
size when it is filled with implicit points:
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A braidoid diagram filled with implicit points is called a
combinatorial braidoid diagram.
A combinatorial braidoid diagram can be decomposed into a finite
number of blocks from the following set:



Composition rules

Conversely, a finite number of elementary blocks can be composed
according to certain rules to form a combinatorial braidoid diagram:

1 2 3 4

λ32 

h
(3)
2

1 2 3 4

1 2 3 4

h2

 l2

1 2 3 4

= =

1 2 3 4

h2

1(2)

1 2 3 4

1
(2)

l2

=

1 2 3 4

=

The composition of some 4-blocks



Relations on the composition

The composition is subject to some relations corresponding to the
braidoid isotopy moves:

In this way we find a correspondence between the isotopy classes of
braidoids to the set of combinatorial braidoids. This provides us an
algebraic encoding of a braidoid.



Conclusions

In this PhD,
We studied the theory of knotoids focusing on knotoids in S2 and
R2; we defined new invariants for them in analogy with the
virtual knot invariants.
We made a brief introduction to virtual knotoids.
We gave a geometric interpretation for planar knotoids.
We utilized our interpretation in topological analysis of protein
chains.
We initiated the theory of braidoids. We set the fundamental
notions for braidoids and we studied them in relation to planar
knotoids.



Most of the results have been presented in several
conferences/meetings, and they have been published:

1 New invariants of knotoids
(With L.H. Kauffman), European Journal of Combinatorics 65C
(2017) pp. 186-229

2 Knotoids, braidoids and applications
(With S.Lambropoulou), Symmetry 9(12):315, (2017)

3 On the height of knotoids
(With L.H.Kauffman), to appear in Book at Springer
Proceedings in Mathematics & Statistics (PROMS) titled:
Algebraic Modeling of Topological and Computational
Structures and Applications (2017)

4 Topological models for knotted bonded open protein chains
using the concept of knotoids and bonded knotoids
(With D.Goundaralis, S.Lambropoulou, J.Dorier, A.Stasiak and
L.H.Kauffman) Polymers 9(9), 2017)



Further Questions/Directions

1 The next step to the study of braidoids is to understand the
algebraic structure admitted by braidoids.

2 The elementary blocks of a braidoid diagram are in resemblance
with Rook diagrams.
Is there an association of the set of braidoids with a diagram

algebra such as Rook or Motzkin algebras ?.
3 We can define a (oriented) tangloid diagram by extending the

notion of a tangle with presence of ‘free’ strings:

An oriented tangloid

We will make a further study on tangloids .



Thank you for your attention!


