## Background

Knotoids are defined by V. Turaev in 2010 [3].

- A new diagrammatic approach to knot theory: Every knotoid diagram represents a classical knot. Connect the endpoints by a simple arc which goes under every strand it meets, this operation is called the *underpass closure*.
- An extension of classical knot theory: Cut out an open segment of an oriented knot diagram which is disjoint from the crossings, to obtain a knotoid diagram with endpoints lying in the same local region. This defines an injective map from the set of classical knots to the set of classical knotoids.

## Definition

A knotoid diagram K in  $S^2$  is a generic immersion  $K:[0,1] \to S^2$  with

- finitely many transversal double points, named as crossings of K,
- 2 two endpoints as the images of 0 and 1, named as the *tail* and the *head*, respectively. The endpoints are distinct from each other and from the crossings of K. The orientation is

always from the tail to the head.



Together with isotopy of  $S^2$ ,  $\Omega_{i=1,2,3}$ - moves generate an equivalence relation on knotoid diagrams



It is forbidden to pull an endpoint over/under a transversal strand!

A *classical knotoid* is an equivalence class of all equivalent knotoid diagrams.

The *height* (or the complexity) of a classical knotoid diagram is the minimum number of crossings that a connection arc creates during the underpass closure. The height of a classical knotoid K is defined as the minimum of the heights, taken over all equivalent classical knotoid diagrams to K. The height is a classical knotoid invariant [3].

# Invariants of Knotoids Neslihan Gügümcü, Louis H. Kauffman National Technical University of Athens, University of Illinois at Chicago



## The Virtual Closure

Every classical knotoid diagram represents a virtual knot:

The *virtual closure* map

 $\overline{v}$ : Classical Knotoids  $\rightarrow$  Virtual Knots of genus  $\leq 1$ 

| is defined by connecting the endpoints of a classical | Th |
|-------------------------------------------------------|----|
| knotoid diagram in the virtual way.                   | ot |
|                                                       | pc |



The virtual closure of a knotoid diagram

| А  |   |
|----|---|
| K  | - |
| С  | ( |
| tł | ) |

## Motivation: The Great Connection

The virtual closure map, being a well-defined map, is a key to apply virtual knot invariants to knotoids. In fact, if Inv(K) denotes a virtual knot invariant then we can define a knotoid invariant Inv(K) for any classical knotoid K by the following formula,  $Inv(K) = Inv(\overline{v}(K))$ .

| Invariants of knotoids that are also<br>virtual knot invariants |                                                            |  |
|-----------------------------------------------------------------|------------------------------------------------------------|--|
| The arrow polynomial gram $K$ , $A[K]$ depends                  | of a classical knotoid dia-<br>s on the oriented state ex- |  |
| pansion.<br>$A[K] = \sum_{S} \langle K S \rangle \langle -$     | $-A^2 - A^{-2} \ S\  - 1 \Lambda_i$                        |  |
| where the sum runs over                                         | the oriented bracket states,                               |  |
| $\langle K S \rangle$ is the usual ve                           | ertex weights of the bracket                               |  |
| polynomial, $  S  $ is the n                                    | umber of components of the                                 |  |
| state $S$ and $\Lambda_i$ is the var                            | riable associated to the long                              |  |
| segment component of S                                          | S with irreducible zigzags.                                |  |
|                                                                 |                                                            |  |
| $A \longrightarrow +A^{-1}$                                     |                                                            |  |
| $=A^{-1} + A$                                                   |                                                            |  |
| $K \frown - \delta K \qquad K \qquad - \delta K$                |                                                            |  |
| $\Lambda - 0 \Lambda \qquad \Lambda - 0 \Lambda$                | $\Lambda_1$ $\Lambda_2$                                    |  |
| Oriented state                                                  | Reduction rules: The circular                              |  |
| expansion, $\delta = (-A^2 - A^{-2})$                           | components are free of                                     |  |
|                                                                 | zıg-zags, long components can                              |  |
|                                                                 | nave irreducible zig-zags!                                 |  |

The  $\Lambda$ -degree of the index polynomial is the max. of  $i \in \mathbb{Z}$  assigned to  $\Lambda_i$  appearing in the polynomial.





The virtual closure map is not injective!

'he bracket polynomial detects the non-equivalency the knotoids in the figure above. The Jones olynomial extends to knotoids via the normalized bracket polynomial of knotoids [3].

Conjecture 1: The Jones polynomial, J(K), detects the trivial knotoid.



This is a virtual knot with trivial Jones polynomial [2] fact:  $J(K) = J(\overline{v}(K))$ , for any classical knotoid

Conjecture 2: The virtual knot in the figure is not ne image of  $\overline{v}$ .

The affine index polynomial of a knotoid K,  $P_K(t)$ epends on an integer labeling that the underlying at diagram of K admits.



Integer labeling at a flat crossing

tart labeling the arc next to the tail with 0. Each rc of the flat diagram of K is labeled according to he rule. Then at each crossing c of K we have two umber outcomes:

$$w_+(c) = a - (b+1)$$
  
 $w_-(c) = b - (a - 1)$ 

The weight of c is:

if the sign of c is a positive,  $w_K(c) = \langle$  $w_{-}(c)$ , if the sign of c is a negative  $P_K(t) = \sum_c \operatorname{sign}(c)(t^{w_K(c)} - 1)$ 

The height of a knotoid can be estimated both by the affine index and the arrow polynomial.

Let K be a classical knotoid and |m| be the maximal weight of the crossings of K. If the maximum degree of the affine index polynomial of K is |m| then the height of  $K, h(K) \ge |m|$ .

The height of a classical knotoid K is greater than or equal to the  $\Lambda$ -degree of its arrow polynomial.

There is a pair of crossings  $c_1, c_2$  of the *n*-fold flat spiral knotoid diagram such that  $(w_+(c_1), w_+(c_2)) =$ (n, -n). Then the heights of the knotoids overlying the n-fold flat diagrams with all crossings positive, are determined by the their affine index polynomials.

If the crossings of the 3-fold spiral, A, B, C are positive and D, E, F are negative then the index polynomial gives trivial lower bound for the height. Fortunately the  $\Lambda$ -degree of the arrow polynomial is 3. Therefore this knotoid has height 3. We have many other cases in which the arrow polynomial gives a better estimation for the height.

### Result 1

### **Result 2**

## Which lower bound is better?



1, 2 and 3-fold flat spirals

References

[1] N.Gügümcü, L.H.Kauffman, New Invariants of Knotoids,

http://arxiv.org/abs/1602.03579

[2] L.H.Kauffman, Introduction to Virtual Knot *Theory*, JKTR, **21**, (2012), no.13, 37 pp.

[3] V.Turaev, *Knotoids*, Osaka J.of Math., **49**, (2012), no.1, 195-223

#### **Contact Information**

nesli@central.ntua.gr& kauffman@uic.edu