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What is a knotoid diagram?

A knotoid diagram is an open-ended knot diagram in S2 (or R2) with
two endpoints that can lie in different regions of the diagram.
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What is a knotoid diagram?

Definition (Turaev, 2012)
A knotoid diagram K in S2 (or R2) is an immersion

K : [0,1]→ S2 or R2 such that:

1 each transversal double point is endowed with under/over-data,
and we call them crossings of K,

2 the images of 0 and 1 are two disjoint points regarded as the
endpoints of K. They are called the tail and the head of K,
respectively.

3 K is oriented from the tail to the head.
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What is a knotoid?

Definition
A knotoid is an equivalence class of the knotoid diagrams up to the
equivalence relation induced by the Ωi=1,2,3-moves plus the isotopy
of S2 (or of R2, respectively).

Ω1

Ω2

Ω3

Equivalence moves

Φ+ Φ−

Forbidden knotoid moves
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What is an invariant of a knotoid?

Definition
Let M denote a set of mathematical objects. An invariant of knotoids
is a mapping

I : {Knotoid diagrams}→M,

assigning the same object to equivalent knotoid diagrams.
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A small note on knotoids in S2 and in R2

There is a well-defined map,

ι : {Knotoids in R2}→ {Knotoids in S2}

induced by ι : R2 ↪→ S2. This map is surjective, but not injective.

Nontrivial planar knotoids which are trivial in S2
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From classical knots to knotoids

The theory of knotoids in S2 is an extension of the classical knot
theory. The map α ,

α: Classical knots→ Knotoids in S2

is induced by deleting an open arc which does not contain any
crossings from an oriented classical knot diagram. The map α is
injective.
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From classical knots to knotoids

Definition
A knotoid in S2 that is in the image of α , is called a knot-type knotoid.
A knotoid that is not in the image of α is called a proper knotoid.

{Knotoids in S2}= {Knot-type knotoids}∪{Proper Knotoids}

A knot-type knotoid A proper knotoid
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A geometric interpretation of knotoids in R2

Any open-ended oriented space curve determines a knotoid in a
plane: There are two lines passing through the endpoints and
perpendicular to a plane where the curve has a generic
projection. The projection of the curve along these lines on this
plane gives a knotoid diagram.
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A geometric interpretation

Any knotoid determines an open-ended oriented curve in R3:
Keep the endpoints attached on the two lines passing through the
endpoints and perpendicular to the plane of a knotoid diagram
and push the crossings up or down in the vertical direction
accordingly to their over/under-data.
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A geometric interpratation of knotoids in R2

Theorem (G. - Kauffman)
Two open-ended oriented curves embedded in R3 that are both
generic to a given plane, are line isotopic (with respect to the lines
determined by the endpoints of the curves and the plane) if and only
if the projections of the curves to that plane are equivalent knotoid
diagrams in the plane.
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From knotoids to classical knots

Knotoids give a new diagrammatic approach to knot theory: Any
knotoid diagram represents a knot in R3 via the over- or
under-closure and any classical knot can be represented by a
knotoid diagram.

Two types of closures resulting in different classical knots

The underpass closure of a knotoid diagram induces a well-defined,
surjective map,

ω−: Knotoids→ Classical knots
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The height of a knotoid

Definition
The height of a knotoid diagram is the minimum number of crossings
created during the underpass closure.
The height of a knotoid K is defined as the minimum of the heights,
taken over all equivalent knotoid diagrams to K.

Theorem (Turaev)
The height is a knotoid invariant.

A knotoid has zero height iff it is a knot-type knotoid.
≡

A knotoid has non-zero height iff it is a proper knotoid.
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How do we compute the height?

Question

Apparently, the first diagram has height 1 and the second one
has height 2. Are there some equivalent diagrams to the dia-
grams above with less height?
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Virtual knots

Virtual knot theory is a natural extension of the classical knot theory.

Definition (Kauffman)
A virtual knot k is an embedding

k : S1→ Σg≥0× [0,1].

A virtual knot diagram is a generic projection of k in Σg with the data
of under/over assigned to each self-crossings.
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Definition
The virtual knot diagrams in two surfaces are said to be
stably-equivalent if one is related to the other one by the three
Reidemeister moves in the surfaces, orientation preserving
homeomorphisms of the surfaces and addition/removal of 1- handles
in the complements of the diagrams.
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Combinatorial approach

Definition (Kauffman)
A virtual knot diagram k is a generic immersion

k : S1→ R2 (or in S2),

with finitely many classical crossings and virtual crossings.

17 / 50



Combinatorial approach

Definition
Two virtual knot diagrams are virtually equivalent in S2 or in R2 if
there is a finite sequence of moves generated by the three
Reidemeister moves and the detour moves.

The detour move
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Theorem (Kauffman, Carter, Kamada, Saito)
Two virtual knot diagrams are stably equivalent if and only if their
corresponding diagrams in S2 are virtually equivalent.

Definition
The genus of a virtual knot is the minimum genus among the surfaces
that the knot has a diagram without any virtual crossings.
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From knotoids to virtual knots

Every knotoid diagram in S2 represents a virtual knot:
The endpoints of a knotoid diagram K are connected by an embedded
arc in S2 keeping the information of each intersection of the arc with
the diagram as a virtual crossing.

The resulting virtual knot diagram is called the virtual closure of K.
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The virtual closure map

Definition
There is a well-defined map called the virtual closure map

v : Knotoids in S2→ Virtual knots of genus≤ 1 .
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The virtual closure map

The virtual closure map is not injective.

R
Y

G

R
R

R

A pair of nonequivalent knotoids with the same virtual closure
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The virtual closure map

Proposition (G. - Kauffman)
The virtual closure map is not surjective.

The following virtual knot is of genus 1 but it is not in the image of
the virtual closure map:

This can be shown by examining the surface-state curves of the
diagram in torus.
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Sketch of the proof
Observation 1: Non-trivial state curves of the following knot diagram
are of the form 2[λ ] and 2[µ].

AAA AAB ABA BAA

ABB BAB

(T,K)

[0] [2λ ] [2µ] [2µ]

[0]

BBBBBA

d [µ] d2d

A

B
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Proposition (G. - Kauffman)
If the state curves of a torus representation of a genus 1 knot that is in
the class of the closure of a knotoid, consist in simple closed curves of
the form (up to some orientation) k[λ ] and m[µ] then |k|= |m|= 1.

Conclusion

The virtual knot in question is not the virtual closure of a kno-
toid in S2. Therefore the virtual closure map is not surjective.
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Motivation

Having constructed a well-defined map, we can apply virtual knot
invariants to knotoids!

Let Inv denote an invariant of virtual knots and K be a knotoid
diagram. Define a knotoid invariant I by the following formula,

I(K) = Inv(v(K)).
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An affine index polynomial of knotoids

The invariant depends upon labeling the flat diagram corresponding to
a knotoid diagram K with integers using following rule:

a

a−1b+1

b

Integer labeling at a flat crossing

Note that the first and the last arc of the diagram can be always
labeled by 0.
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The affine index polynomial of a knotoid

Definition
Let c be a crossing of K, two number outcomes are derived, w+(c)
and w−(c) which are called positive and negative weights of c:

w+(c) = a− (b+1)
w−(c) = b− (a−1)

where a and b are the labels for the left and the right incoming arcs at
the corresponding flat crossing to c, respectively.
The weight of c is defined as

wK(c) =

{
w+(c) if the sign of c is positive,
w−(c) if the sign of c is negative
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The affine index polynomial of a knotoid

Definition
The affine index polynomial of a knotoid K is defined by the equation,

PK(t) = ∑c sign(c)(twK(c)−1)

where the sum is taken over all crossings of a diagram of K.

Theorem (G. – Kauffman)
The affine index polynomial is a knotoid invariant.
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An example

0

−1

0

1

0 w+ w−

A

B

A

B

−1 1

1 −1

+

+

We find that
P(K) = t+ t−1−2.
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A comparison of the affine index polynomials

The affine index polynomial was defined as an invariant of virtual
knots by L. Kauffman in 2012.

Theorem (Kauffman)
The affine index polynomial is trivial for all classical knots.

Facts

1 Knot-type knotoids have trivial affine index polynomial.
2 Proper knotoids may have nonzero affine index

polynomial.
⇒If a given knotoid diagram has nonzero affine index
polynomial, then the knotoid diagram represents a proper
knotoid.
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The affine index polynomial and the height

Theorem (G. – Kauffman)
Let K be a knotoid diagram and m be the maximum degree of the
affine index polynomial of K. Then the height of K, h(K)≥ m.
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A sketch of the proof

Observation 1: The algebraic intersection number of the loop at c with
the strands intersecting the loop is equal to either w−(c) or w+(c).

a

a+1a

a−1 a

a−1

a

a+1

a

a+1

Entering Value−Exit Value = w−(C) Entering Value−Exit Value = w+(C)

C C
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0
-1

-2

-1

0

1 2

0

1

1

A

B

CD

E

F

0
0

1
A

w+ w−

B
C
D
E
F

-1 1
-2 2
2 -2
1 -1
-1 1
1 -1

PK (t) = t2
+2t+2t−1 t−2 6+ -
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B
C
D
E
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-1 1
-2 2
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PK (t) = t2
+2t+2t−1 t−2 6+ -

We smooth twice-met crossings on the loop at a maximal weight
crossing in the oriented way (crossing C for the diagram above):

C

F

E

D
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PK (t) = t2
+2t+2t−1 t−2 6+ -

We smooth twice-met crossings on the loop at a maximal weight
crossing in the oriented way (crossing C for the diagram above):

C

F

E

D

Observation 2: Let IK be the algebraic intersection number of the
long component with the Seifert circles. |IK|= wK(C). Then the
weight of C can be at most as the number of the Seifert circles.

34 / 50



Observation 3: The height of the diagram can be at least as the
number of the Seifert circles by Jordan curve theorem.
Corollary:

w(C)≤ h(K)

Since the maximum degree of the polynomial is invariant we have,

max. degree of PK(t)≤ h(K)

for any equivalent diagram K.

35 / 50



Examples

P(K1) = t+ t−1−2.
P(K2) = t2 + t+ t−1 + t−2−4.
P(K3) = t3 + t2 + t+ t−1 + t−2 + t−3−6.

These give examples of height n for any natural number n.
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The arrow polynomial

The construction of the arrow polynomial of knotoids is based on the
oriented state expansion of the bracket polynomial of knotoids.

= A + A−1

= A−1
+ A

K = (−A2−A−2)K

Oriented state expansion
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Reduction rules for the arrow polynomial

To reduce the number of cusps in a state component we have the
following rules:

Λ1 Λ2
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The arrow polynomial

Definition
We define the arrow polynomial of a knotoid diagram K as,

A [K] = ∑S< K|S >(−A2−A−2)‖S‖−1Λi

where the sum runs over the oriented bracket states, < K|S > is the
usual vertex weights of the bracket polynomial, ‖S‖ is the number of
components of the state S and Λi is the variable associated to the long
segment component of S with irreducible zig-zags.

Theorem (G.–Kauffman)
The normalization of the arrow polynomial (multiplication by
(−A3)−wr(K)) is a knotoid invariant.
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An example

A [ = A2 +

A

A

A

B

+ B

A

+ A−2
]

= A2 +(1−A4)Λ1

B

B

= A2
+ 2 + A−2 d
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The arrow polynomial and the height

Definition
The Λ-degree of a summand of the arrow polynomial of a knotoid
which is in the form, AmΛi is equal to i. The Λ-degree of the arrow
polynomial of a knotoid is defined to be the maximum Λ- degree
among the Λ-degrees of all the summands of the polynomial.
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The arrow polynomial and the height

Definition
The Λ-degree of a summand of the arrow polynomial of a knotoid
which is in the form, AmΛi is equal to i. The Λ-degree of the arrow
polynomial of a knotoid is defined to be the maximum Λ- degree
among the Λ-degrees of all the summands of the polynomial.

Theorem (G. – Kauffman)
The height of a knotoid K in S2 is greater than or equal to the
Λ-degree of its arrow polynomial.
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Idea of the proof

Closing a knotoid diagram K virtually corresponds to closing the
endpoints of the long segment components of the states of K
virtually.
The Λi-variables of A [K] turns into the Ki-variables assigned to
the circular components obtained.
A theorem of Kauffman and Dye tells that the K-degree of the
arrow polynomial is a lower bound for the virtual crossing
number.
The Λ-degree of A [K] ≤ # of the virtual crossings of the knot
v(K).
# of virtual crossings of the knot v(K) ≤ h(K), for any knotoid
diagram equivalent to K.
The Λ-degree of A [K] ≤ h(K).
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Which lower bound is better?

P(K) = (t0−1)− (t−1)− (t−1−1)+(t−1)+(t−1−1) = 0
A [K1] =−A−3 +A−2A5 +A9 +A−9Λ1−2A−5Λ1 +2A−1Λ1−
2A3Λ1 +A7Λ1.

Conclusion: The height of the knotoid is 1.
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A question
What is the height of the following knotoid?

PK(t) = 2t+2t−1−4 and
A [K] =−A−5 +2A−1−A3−A7 +2AΛ1−2A5Λ1. Both polynomials
assure that the height is at least 1.

What is the height of the knotoid; 1 or 2?
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A conjecture on the height

Conjecture (Turaev)
Minimal crossing diagrams of knot-type knotoids have zero height.
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A recipe to prove the conjecture

Main Ingredient:

Theorem (Manturov)
Let κ be an isotopy class of a classical knot. Then the minimal
number of classical crossings for virtual diagrams of κ is realized on
classical diagrams (genus 0- diagrams) up to detour moves.
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A recipe to prove the conjecture

Main Ingredient:

Theorem (Manturov)
Let κ be an isotopy class of a classical knot. Then the minimal
number of classical crossings for virtual diagrams of κ is realized on
classical diagrams (genus 0- diagrams) up to detour moves.

Sketch of the proof:

1 Let k be a knot-type knotoid then v(k) is a classical knot.
2 Assume there exists a minimal crossing knotoid diagram K with

nonzero height. This forces the virtual knot diagram v(K) to be a
minimal diagram for v(k).

3 The underlying genus of v(K) is 1.
4 This contradicts with the above theorem.
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Corollary
Crossing number of a knot-type knotoid is equal to the crossing
number of the knot that is the underpass closure of the knotoid.
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Further Questions & Directions

We want to know more about the height of knotoids and its
relations with both the affine index polynomial and the arrow
polynomial.
Does there exist an example for which the index polynomial is
superior to the arrow polynomial in height determination?
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How to determine if a virtual knot of genus 1 is in the image of
the virtual closure map?
We have the following conjectures on the characterization of the
kernel and the image of the virtual closure map.

Conjecture
The virtual closure of a proper knotoid is always a genus 1 virtual
knot.

Conjecture
There is no proper knotoid whose virtual closure is the trivial knot.
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Thank you for your attention!
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